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ABSTRACT

This report derives equations predicting satellite
ephemeris error as a function of measurement errors of
space-surveillance sensors. These eguations lend them-
selves to rapid computation with modest computer re-
sources. They are applicable over prediction times such
that measurement errors, rather than uncertainties of
atmospheric drag and of Earth shape, dominate in producing
ephemeris error. This report describes the specialization
of these equations underlying the ANSER computer program,
SEEM (Satellite Ephemeris Error Model). The intent is
that this report be of utility to users of SEEM for in-
terpretive purposes, and to computer programmers who
may need a mathematical point of departure for limited
generalization of SEEM.
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I. INTRODUCTION

j
g

A. General Overview

Earth-satellite ephemeris estimation (i.e., position
prediction) is fundamental to many space-related operations.
Measurements by friendly space-surveillance sensors are
computer processed to yield necessary ephemerides. 'Each
ephemeris thus provided has some characteristic accuracy.

The prediction of ephemeris error is also important,
both operationally and in the planning of space surveil-

lance systems and of data reduction procedures.

The problem addressed here is the mathematical predic-
tion of ephemeris error, as it results from measurement
error alone, The results are valid under conditions where 1
one may validly ignore uncertaqinties of atmospheric drag and
of Earth shape. A major requirement was that resulting equa-
tions be suitable for computer programming to obtain rapid

calculations with modest computer resources.

This report presents a detailed, general parametric solu-
tion to the above problem. This report gives, in particular,
the somewhat specialized form of that solution, which is the
basis of the new ANSER computer program, SEEM (Satellite
Ephemeris Error Model).*

SEEM demonstrates, with a time~shared HIS-635 computer,
the requisite programming suitability of the mathematical
results herein. Reference 1 describes successful use of

* A FORTRAN program, written by the author of this report,
as yet unpublished.

pmcmmmmmnw

W

e R R e e — SN




SEEM empirically to investigate conditions of its validity
for ephemeris error prediction vig-a-vis Earth-based radar
sensors.*

This report is directed, first, to users of SEEM who
may wish to understand its fundamental interpretation. It
is also directed to computer programmers who may wish to
modify certain specializations of the current version of
SEEM and need a mathematical point of departure. The in-
tent is that material here be accessible to engineers and
scientists who do not necessarily specialize in either
statistics or astrodynamics.

Thus, this report is semi-tutorial in style, and is
derivationally self-contained to the extent practical. Some
original mathematical developments are included and appro-~
priately noted.

B. Technical Overview

The purpose of this section is to provide not only an
overview of report organization, but also a substantive dis-
cussion of ephemeris error estimation sufficient (1) for

* A summary of established SEEM applicability is as follows.
The model validly accommodates drag forces for satellite
altitudes above about 180 km, over time intervals—encom-
passing both sensor measurements and the prediction times
—of up to at least 9 hours. The model validly accom-
modates noncentral-forces gravitational fields for low-
altitude satellite passes by as many as three Earth-based
radars, over somewhat longer measurement-and-prediction
time intervals. Assumptions here are (1) current capa-
bility for predicting drag forces; (2) current under-
standing of geoid and other gravitational perturbations;
and (3) no radical radar accuracy improvements beyond
today's state-of-the-art.




routine interpretation of SEEM inputs and outputs, and (2)
for appreciation of options for limited generalization of
SEEM.

Three subsections follow. The first gives the overall
technical approach. The second overviews report organiza-
tion, and in particular that of Chapter 1I. The third
discusses substantively Chapter I11I, the heart of the report.

1. Approach to Solution

The overall approach to solution ol the stated problem
is to ignore drag and geoid uncertainties by estimating
ephemeris errors under the Keplerian (central-force-field)
approximation. The rationale for this approach is that the :
distance of a "Keplerian" satellite from a Keplerian-estimated
position should approximate the distance of a "real-world"
satellite from a position estimated via perturbation theory,
provided that calculational treatment of perturbations is

exact.

The cited investigations of Reference 1 appear to con-
firm the validity of the Keplerian approximation for the
problem at hand.

The specific analytical approach of this report is
parametric, utilizing standard linear-algebra procedures
in a covariance-matrix formulation.

2. Organization of the Report .

This report constitutes three chapters, plus four ap-
pendices. The non-statistician reader may wish to read
Appendix A before proceeding to Chapter II. Appendix A is
a purely tutorial review of covariance matrix theory. !




Cnapter II reviews the linear-algebra theory by which
one may estimate ephemerides—in a Keplerian universe—
from sensor measurements. This chapter serves alsoc to de-
velop the notation used later on. The theory of Chapter 1I
accommodates a variety of sensor types, sensor basing both
terrestrial and on satellites, and a variety of "unbiased
statistical estimators."

Section II.A defines useful coordinate systems, and some
matrix transformations among finite and infinitesimal (error)
vectors in those systems. Section I1.B, drawing upon Appen-
dix B, deals with transition matrices between astrodynamical
state vectors and between error vectors associated with those
states.

Section II.C derives the sensor "observation equation.”
Section II.D treats the iterative differential correction
process, which transforms observations into an estimated
state vector corresponding to an arbitrary epoch (i.e., in-
stant in time). A subset of the components of this vector
constitutes an ephemeris estimate.

Section II1.E discusses error minimization criteria and
associated unbiased statistical estimators. Finally, Section
I1.F outlines calculational shortcuts for (1) estimating
state vectors for many epochs, and (2) revising state-vector
estimates so as to exploit newly available measurement data.

The next subsection describes Chapter II1 both organiza-
tionally and substantively, and also defines the supporting
role of Appendix C,.




3. Ephemeris Error Analysis

Chapter II1 deals with prediction of errors in ephemer-
ides that would be arrived at by the methods of Chapter II.*
This error analysis assumes perfect convergence of the iter-
ative differential correction process of ephemeris estimation.
Thus, the limiting accuracy characteristics of a particular !
ephemeris estimation process are amenable to assessment, even |
without analyzing the practical convergence properties of tnat
process.

a. Inputs, Outputs, and General Solution

Section III.A defines in mathematical terms the as-

sumed inputs and desired outputs of the problem.

Key desired outputs are the standard deviations of
the components of satellite position error, for the time of
each ephemeris. These are to be expressed in a coordinate
system selected to make correlations among ephemeris error

components vanish. Further desired outputs are tne orien-

tation angles of that coordinate system, relative to a "UVW"
system defined as having the following axes at an instant
in time:

RADIAL - Up: geocenter toward satellite

"ALONG-TRACK"” - A third axis orthogonal to the other
two axes, approximately along the sat-
ellite velocity vector (exact for cir-
cular orbits)

* Actual estimation of ephemerides is unnecessary to esti-
mate their errors.




CROS5-TRACK - Normal to the orbital plane, di-
rected along the satellite angular
momentum vector.

The above standard deviations and orientation angles
have a particularly simple physical interpretation if, in
addition to the input assumptions listed below, the probapil-
ity distributions of the measurement errors are of multivariate
normal (Gaussian) form. Then (see Appendix A) one may inter-
pret the standard deviations as the principal nalf-axial di-
mensions of a "10" ellipsoidal confidence volume, oriented
along the axes of the rotated coordinate system. One may
interpret the ellipsoid as centered either at the true ephem-
eris, expressive of a level of confidence that the estimated
ephemeris will fall within the ellipsoid; or as centered on
the estimated ephemeris, expressive of a level of confidence
that the true ephemeris will fall within the ellipsoaid.

The level of confidence of a 10 ellipsoid of satel-
lite position is about 20 percent. For many interpreta-
tive purposes, a 30 ellipsoid (i.e., having triple the dimen-
sions of the 10 ellipsoid) is more useful, providing a con-
fidence level of 61 percent.

Assumed inputs are (1) the “true" orbit parameters
of the satellite; (2) sensor types (measuring any subset
of the quantities: range, two angles, and their respec-
tive rates) and locations (sensors may be fixed or may move
on or above the Earth's surface); (3) sensor envelopes of
geometric coverage (range and angle extrema); (4) the as-
sumption that sensor measurements are "unbiased"; (5) “"true”
statistical parameters of measurement error, in the form of




a covariance matrix D covering all sensor measurements made;
{6) the covariance matrix C—some approximation to D—
characterizing the "estimator” via which actual estimation
of ephemerides would proceed; and (7) the instants in time
corresponding to the presumed ephemerides whose accuracy 1is

in question.

There are still further éssumed inputs, which, how-
ever, derive calculationally from above inputs (1), (2), and
(3). These further inputs are "ideal" (error-free) sensor
observation data of the target satellite. A "driver" program
to generate these data preexisted SEEM at ANSER.* This re-
port does not give the full mathematical basis of such a
driver program, although Sections II.A and I1.B do provide

many of the necessary transformations.

Regarding inputs (5) and (6) above, the matrices D
and C typically contain >106 elements each. Apparently,
their general parametric specification poses a practical
difficulty. Actually, in the case of C, this difficulty
must in some sense be resolvable relative to any practical
procedure for ephemeris estimation, since any such proce-
dure involves specification of C (see ensuing discussion
of Section II1I.C).

Section I111.B gives the general solution equations
for Keplerian ephemeris error prediction. These eguations

* A multipurpose Keplerian program, thus far unpublished.
It utilizes a modified Earth rotation rate, thereby
correcting to first order for the drift of the satellite
orbital plane due to the Earth's equatorial bulge.




provide desired outputs as a function of assumed inputs.
These egquations appear to present a further practical dif-
ficulty, in that they require extraction of the inverse of
the large matrix C.*

As before, this difficulty must actually be resolv-
able for error prediction relative to any practical proce-
dure for ephemeris estimation, since extraction of c-! is
necessary there also. However, this difficulty is not nec-
essarily resolvable relative to "ideal” ephemeris estimation,
for which one must take C = D.

b. Detailing of the General Solution

Section 1I1.C presents candidate representations of
D that resolve the specificational, and in one case also the {
inversion, difficulties identified above. These represen-
tations serve as a point of departure for selection of C
representations applicable to ephemeris estimation and, con-
comitantly, to ephemeris error prediction. The two subsec-
tions of Section II1.C warrant detailed discussion here.

Subsection III.C.! begins by assuming that in the
*real”™ Keplerian world, raw measurement data are prepro-
cessed at each sensor for each pass as follows, for entry
into the ephemeris estimation process.

Repeatedly, raw data accumulated over an interval of
a few seconds are suitably averaged, such that the averaged
results correspond to the instant at the center of the ob-
servation interval. Known corrections for systematic error

* Practical, not theoretical, invertibility of C is at issue
here. Theoretical existence of C-1 follows from the defi-
nition of C as a covariance matrix, with the stipulation
that "perfect” sensors (i.e., having any zero standard
deviation of measurement error) are not allowed.




(e.g., sensor calibration corrections) are then applied to
the averaged data to form a single "observation vector." If
the sensor happens to be a doppler radar, for example, ob-
servation components would be range, two angles, and range
rate. At the end of the pass, the collection of all obser-
vation vectors is then fed into the ephemeris estimation
process. Subsection III.C.1 defines D to be the "true”
covariance matrix of the errors of all observation vec-
tors, over all passes and sensors.

This subsection then treats the errors of each ob-
servation vector as the sum of "noise errors" and "residual
bias errors,” the latter accounting for all residual system-
atic errors in the observation. By assumption, noise errors
may be correlated with each other within an observation, but
not from observation to observation. By further assumption,
the noise errors are uncorrelated with residual bias errors,
within an observation and from observation to observation.

In order to exclude "perfect" sensors, all noise-error stand-
ard deviations must be nonvanishing, however small. In order
to ensure "unbiased" measurements, it is sufficient to assume
that both noise~error and residual-bias error probability
distributions are symmetric about zero.

The effect of this decomposition upon D is to render
it the sum of a "noise matrix” and a "residual bias matrix."
Of these, the noise matrix is block diagonal, each block
being the covariance matrix of a single observation and of
dimensionality at most 6 * 6. If the noise errors of an
observation happen to be uncorrelated among themselves, the
corresponding block will be diagonal.




The residual bias matrix may, however, be relatively
complicated, with widespread off-diagonal terms representing
long-term correlations among residual-bias errors. Subsec-
tion III.C.1 takes a first step toward simplifying this ma-
trix by assuming zero correlation among residual-bias errors
of different sensors. Thus, with appropriate organization
of D, the residual-bias matrix becomes block diagonal, each
block corresponding to all the passes by a particular
sensor.

Subsection 1I1.C.1 concludes by developing a detailed
parametric representation for the noise and residual-bias
matrices, structured as just described. Parameters comprise
various error standard deviations and correlation coefficien-
cies, with general functional dependencies upon satellite
position relative to the sensor.

Thus, Subsection 111.C.1 provides D structures that
are physically realistic for a wide variety of sensing con-
ditions. It also provides a parametric formalism lending
itself to practical specification of D as an input to ephem-
eris error prediction. However, because of the large blocks
of elements within the residual bias matrix, the structuring
of Subsection I1II.C.1 is not generally sufficient to provide
practical invertibilty of D. Hence, this D-structure does
not generally permit "ideal®™ ephemeris estimation with C = D.

The objective of Subsection III.C.Z,is to furtner
structure the residual-bias matrix so as to arrive at an
easily invertible D, yet accord with physical reality for at
least some measurement circumstances.




Subsection III.C.2 assumes, for any given sensor,
that the residual bias errors do not change appreciably
over a pass, Or alternatively over several passes closely
spaced in time (a "pass multiplet").* This subsection

further assumes that residual biases change significantly

between pass multiplets (but their standard deviations do
not change) such that residual-bias correlations vanish
between multiplets.

Thus, each sensor block of the residual bias matrix
decomposes into a set of small blocks, each corresponding to
a pass multiplet for that sensor. Each multiplet block con-
stitutes a set of partitions—corresponding to individual
observation vectors—that are identical over the entire
block.

With the aid of a derivation detailed in Appendix C,
Subsection III.C.2 infers and then proves the validity of a
closed-form egquation yielding D-) as a function (1) of the
partitions of the residual bias matrix and (2) of the in-
verses of the partitions of the noise matrix. (As mentioned
earlier, these partitions are of maximum 6 x 6 dimensionality.)
Hence, except for matrix multiplications involving the parti-
tions of the residual-bias matrix, this equation reduces the
complexity of extracting D-' (as structured) to that of
calculating the inverse of the noise matrix alone.+

* Note the implication that residual-bias error is insensi-
tive to satellite position relative to the sensor. This
assumption may be inappropriate, for example, if it should
happen that atmospheric-refraction uncertainties become
large at angles near the horizon.

t+ This equation may be unique to this report. However, a

literature search was not feasible within the scope of
this analysis effort.

1




To summarize, Section I11.C provides various candi-
date D-structures, including structures intermediate to those
just described, for use in detailed expansion of the general
error-prediction equations in Section I1I.B.

Section III1.D continues first by introducing two ]

broad classes of C-structures as approximations to D, and
some gradations among them. Section IIl1.D then explicitly
details the general solution equations for seven combinations
of D-structures and C-structures.

The first class of C-structures constitutes those
congruent to the noise matrix of D, i.e., those wnich are
block diagonal, elsewhere with zeroes for every element .
representing correlations from one observation to another.
These structures are readily invertible and give rise to what !
is sometimes referred to as "weighted-least-sguares"™ (WLS)
ephemeris estimation. WLS estimation ignores all correla-
tions from one observation to another.

*Simple" WLS estimation, a special case, in addition
ignores all correlations among measured quantities within an
observation, i.e., it uses a C~structure that is strictly
diagonal. This is equivalent to the classical estimation
method of Gauss, and produces an optimum fit of the estimated
orbit to actual eensor measurements (see Section Il.E).

The second class of C-structures consists of those
allowing nonvanishing elements that represent correlations
among observations. These structures generally incur practi-
cal difficulties of inversion, and their use is not ordinarily
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D
gives rise to "minimum variance" estimation and produces—if

attempted in practice. The special case when actually C

calculationally feasible—an optimum fit of the estimated
orbit to the true orbit.

Because of its ready invertibility, the "pass-multiplet”
D-structure of Subsection II1.C.2 offers the opportunity for
minimum variance egstimation when (1) that structure is valid,
and (2) parameterz of measurement error are known with suf-
ficient accuracy that .. becomes D.

Secticn I7.) .5 provides detailed expansions of the
ceneral error prediction eguation for C-structures that are
congruent to eac!: of the D-structures of Section III.C, and

in addition for the WLS C-structure, which is congruent to t
the noise~matrix of them all., All C-structures are distinct

from the D-structures, however, in that their parametric

values may be different—their parametric sets may even

be different for the same congruence constraint.

As the various expansions reveal, the amount of
feasible detailing of solutions is quite limited, except

for those C-structures whose inverses can be extracted 4
analytically. Those are the WLS C~structure and the "pass
multiplet” C-structure. These two expansion cases comprise
the point of departure for the specializations of SEEM,

c. The Mathematical Basis of SEEM

Section I1II11.E, the final section of the final chap- 7
ter of the report, deals with SEEM. Of the two subsections,
111.E.2 presents and discusses numeric examples of SEEM out-
puts. That subsection requires no further discussion here.
Subsection II1I.E.1 gives the analytical specializations of
SEEM.

13




As input, SEEM accommodates only radars, and specifi-

cally only those that operate in "altazimuth"™ coordinates:
azimuth, elevation, and range.

One may, however, input a telescope-type sensor by a
strategem, i.e., by assigning a very large value to the range
measurement error. Thereby, one assigns a low statistical
weight to range measurements.

One may also (to some approximation) input other
range-and-two-angle coordinates, e.g., angles relative to
the boresight of a phased-array radar, by (1) in the driver
program, converting to altazimuth coordinates for the "ideal"
observation calculations; (2) in the driver program, finding
a geometrical coverage volume in altazimuth coordinates that
approximates the true coverage volume; and (3) assigning angle
errors to their nearest geometric angle analogs in azimuth and
elevation.

SEEM allows correlations only among errors of a given
measurement component—e.g., range-elevation error corre-
lations are not allowed. Thus, the observation blocks of
the D noise matrix are diagonal, as is each small partition
of the residual bias matrix,

Via the following additional assumptions, SEEM allows
specification of the error performance of each radar in terms
of six parameters, the first three being the (constant)
residual-bias standard deviations. The remaining three para-
meters are the noise errors, which are functionally dependent
upon satellite position in the radar field of view as follows:

(1) The standard deviation of azimuthal noise error
is proportional to 1/cos h, where h is elevation
angle (accounting for increasing indeterminacy

14




of azimuth measurements at elevation angles
approaching the zenith). The constant of pro-
portionality is hence the azimuthal standard
deviation at 0° elevation.

(2) The standard deviation of elevation noise error
is constant, not a function of azimuth, eleva-
tion, or range.

(3) The standard deviation of range noise error is
constant, not a function of azimuth, elevation,
Oor range.

In the light of (3) above, the present version of
SEEM may be inappropriate for high-altitude satellites, where
maximum range is set by radar range performance rather than
by horizon-limited line-of-sight. (SEEM validation did not
include satellite altitudes above approximately 1,000 km.)
SEEM defines all pass multiplets as containing just one pass.
Thus, the residual bias matrix of D—and hence also D itself—
is block diagonal in one-pass blocks.

SEEM provides two choices of C for characterizing
the ephemeris estimation process. In the "minimum variance"
choice, C = D. In the "least squares”™ choice, C is set equal
to the noise matrix of D. (SEEM validation was conducted
only for the least-squares choice.)

SEEM ephemeris error component standard deviations
are specified in UVW coordinates only, and do not include
correlation coefficients that may not vanish in those coor-
dinates. A further output, the standard deviation of the
resultant error vector is invariant with respect to
coordinate~-system selection. Hence, the UVW resultant
error is correct even without coordinate rotation.

15




Empirical results with SEEM indicate that in fact
the error ellipsoid does align itself with the UVW axes
soon—in prediction time—after the most recent pass
(see Subsection III.E). This alignment is due primarily to
the effect of period uncertainty, which makes the along-
track error ordinarily large compared to radial and cross-

track errors.

16

—— e - et seaam—a -
e ‘.




II. EPHEMERIS ESTIMATION

This section describes linear-algebra methodology for es-
timating satellite ephemerides from sensor observations, as-
suming a Keplerian (central-force field) universe. There is
no restriction as to selection of a particular statistical
estimator, except that it be "unbiased.”

Most of the material here occurs—in one form or another—
in References 2 and 3. A first-~order correction term to
the error transition matrix [i.e., Wji in Eguation (26))
does not appear in Reference 2, but is well known in esti-
mation theory. The explicit representation of the partial
derivatives of Wji may well be new as developed in
Appendix B, but are available elsewhere in somewhat dif-
ferent form (see p. B-6, including footnote].

To the exten: practical, the notation here follows the
Herrick standards [Reference 3, Astrodynamieal Terminology,
Notation and Usage (Appendiz), pp. 477-511). The major ex-
ception here is that lightface uppercase Roman letters repre-
sent various matrices rather than specialized astrodynamical
quantities.

A. Reference Frames, Coordinate Systems, and Transformations

Let the time t, be the (arbitrary) initial epoch of the
analysis. Referring to Figure 1, define a righthanded
Cartesian reference frame with positive z-axis through the
Earth's North Pole, and positive x-axis intersecting the
Greenwich meridian as it happens to lie at t,.

* This x~axis choice promotes algebraic simplicity. Con-
version of ensuing equations to a system with x-axis
positive toward the vernal equinox is straightforward.

17




At time

t (1)

"m
ot
!
ad

let the satellite position be

[ %
r = y] (2)
z

and a sensor position be

-

X

|

T Yo (3)
LzT

(One should not consider the sensor position as necessarily
on the Earth's surface, although it is so depicted in Figure 1
for ease of geometric interpretation.)

Again referring to Figure 1, define a topocentric
(sensor-centered) reference frame as righthanded Cartesian,
with positive z'-axis toward the zenith and positive x'-axis
toward the South point of the compass. 1In this frame let

the satellite position be

xl
PEIYY - (4)
z!
With these definitions,
I = I’T+AP ’ (5)

le




FIGURE 1
RELATIONSHIP OF INERTIAL (xyz} TO
TOPOCENTRIC (x'y'2’) REFERENCE FRAMES

(North)
z

4 (Zenith)

Gregnwich Meridian

y' (East)
Greenwich Meridian
attg

{South-Point of Compass)

FIGURE 2
ALTAZIMUTH COORDINATES
IN THE TOPOCENTRIC REFERENCE FRAMES

s

é

Satellite
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where A is a rotation matrix., Table 1 gives a representation
for f7 and A in terms of sensor longitude A, latitude ¢, and
geocenter distance rp.* These may be time-varying Quantities.

Suppose now that one regards the components of p as func-
tions of an arbitrary set of curvilinear coordinates gy, qQ2, Q3.
These will subseguently become the angle and range coordinates
characterizing operation of a given sensor. (Their particular
significance may, however, differ from sensor to sensor.) Let

9

9, . (6)
93

Differentiate Eguation (5) with respect to time, obtaining

P=i +hp+ngg , (7)

where J is the Jacobian matrix for p as a function of q. Table
1 gives representations for A and J.

’

As an illustrative example, consider the case of a sensor
fixed at some position on the Earth's surface and designed to
operate in altazimuth coordinates. Following the notation
of Figure 2, one may write

X X
§=1|h ¢ é' i) (8)
P p

* The representation of A is a standard result. One may de-
rive it by taking products of elementary rotation matrices,
which provide first, a rotation of the primed reference
frame about its y'-axis through the angle - (1/2 =¢); and
second, a rotation about the (now) z-axis through the
angle =~ (A + we t).
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TABLE 1
TRANSFORMATION QUANTITIES

x cos A cos ¢
rely Tp = Ip|sinficos¢|,h 2 3 + w t
sin ¢ e
z
cos A sin ¢ :—sinl\ i cos A cos ¢
A =|sin’sin¢  coslisinhcos¢ A-l - A+
-cos ¢ ! 0 | sin ¢
x' (q)
PlR) =}y (@) J = g-g- %g- %ﬁ—
z'(q) 1 2 3

-f sinAsing¢ + écoshcos¢| -f cosh| -Asinhcos¢ - ¢ cosAsing¢
A=| Acoshsing + ésinl. cos¢= -i sin A l -A cos hcos ¢ - ésinl\ sin ¢

¢ sin¢ 1 0o | ¢ cos ¢
B } )2 3 23,
x= . Tk g iy =1 (flx : 3ql..k)
21 | 22 k=1 3
-1 |
AJ 1_ o o (AJ) I 0
Qa|-——— _ gle |- ——— q-——-

an~1as + a0 an”t L an?

Note: we = Earth rotation rate [radians/unit time)
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and arrive at the specialized transformation matrices of
Table 2.

Returning to the general case, introduce the composite

BN

which will subseguently be useful. Egquations (5) and (7)

vectors

provide a functional relationship between these vectors—
unfortunately, a nonlinear relationship since p(q) is nonlinear.

However, one can show that a fully linear relationship
does exist between the differentials of these vectors, of the

SIEDCE

These vectors will represent errors at a particular instant,
so that in performing differentiations t is to be held constant.

form

To find Q, first differentiate Equation (5), regarding
both sensor position rq and the rotation matrix A as "known"
(i.e., error-free) and hence as constants. One obtains

ér = AJ8q . (10

Differentiating Equation (7),

&t = AJ6q + AKéq + AJSq |, (1)
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defining a new matrix K via the relation

A6Jq £ AKéq . (12)

From Egquation (1) one can derive the representation for K
given in Table 1.

For the example of the Earth-based altazimuth-type sen-
sor, one can further derive the specialized representation
of K given in Table 2.

One can now find the general form of Q by comparing
Equations (9), (10), and (11). Table 1 gives the result
and also the form of 0-!'. One can prove the correct-
ness of Q- by taking the product QQ-1.

One further transformation will prove useful: t
x" X
y* = L}y . (13)
z* z

Bere L is the rotation matrix taking the inertial-frame (xyz)
representation of r into a UVW representation (x"y"z") de-
fined as having the unit vector U(x"-axis) directed radially
outward from the Earth's center toward the satellite; the
unit vector W(z"-axis) Qirected along the angular momentum
vector, normal to the orbital plane; and hence the unit
vector V(y"-axis) approximately along-track in the direction
t—exactly along-track for circular orbits.

To find L in terms of the inertial-frame (xyz) represen-
tation of r, begin by defining a gquantity

l-txi

. (14)
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(vector cross-product), proportional to the angular-momentum
vector. Clearly in the inertial-frame representation,

_1[x
U=+ i’] ; (15)
[ 8
x
“’:.L s )
s SY (16)
L T2
v 1 (s X r)x
= T} (s )(l’)y . (17)
(s ><r)z

But the above nine unit-vector components are just the
direction cosines among the axes of the two reference frames,
and hence are the elements of the rotation matrix relating
the frames. That is,

L= |vl (18)

where notationally U* is the adjoint of U, etc. BHence, L
may be evaluated from Egquations (12) - (15). Since L is a
rotation matrix,

-1

L = L . (19)

B. State Vectors and Related Transformations

One may represent the six parameters of a Keplerian orbit
(including the instantaneous position of the satellite in
that orbit) by the state vector

r (20)
‘t-.7§ ¢

25




comprising the partitions r, r. The subscript denotes time
functionality.
matrix transformation

The subscripts denote not matrix elements, but
rather the times 31 and Gj. The propagation matrix &j;
has the form

One can gain some appreciation for ®5i from the special
case of a circular orbit, for which (dropping the explicit I,
which one is still to understand as present)

1 Circular
Orbit

Y

For a satellite in Keplerian orbit, the

R [fI 4.91]
ji =l Tt . (22)
fI | g1 Ji

where I is the 3 % 3 identity matrix and Appendix B gives
expressions for the scalar functions £, g, f, and g.

A A |

_ cos(Ej-Ei) |

By e eeresresesl BENREN CLY
-n szn(zj-Ei) | cos(Ej-Ei)

Here n is the satellite angular rate [radians/unit time),
and Ej, %j are eccentric-anomaly changes since t = 0.

Important properties of ¢4 are:

Functional Dependence

¢ = Q(;i,ﬁj-ﬁi, R (242)




B T

Composition

¢

x3 ¥31 % ¥xi (240)
Inverse
-1
jS = oij (24c)
Determinant
leg;1 =2 . (244)
Note that when ﬁj = Ei, ®4j reduces to the identity matrix.
One can find the transformation between small errors in
state vectors by differentiating Egquation (19) (i.e., while
holding times ;i and gj constant):
B3 = Fyabry t oyl ay (25)
- 5 (26)

This defines the important propagafdion earor maladx ¥yi.
Appendix B develops an explicit representation for ¥yi in
terms of xj and (%j - Ei).

Table 3 gives a special case of this representation,
which in full generality is algebraically lengthy. This
case corresponds to a circular equatorijal orbit, where the
satellite happens to have the position component x = 0 [see
Equation (2)) at time ii (i.e., the time corresponding to
En.
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Important properties of ¥4; are:

Functional Dependence

Vyi = V(xE-E) (27)
Composition
¢, . + . .. .) =
(By 5 + ¥yy) (&5 + Vi) = ¢V (28)
Inverse
-1
IR (29)
(¢51 le) = °ij + wij :
Determinant
I*ji + ‘Sil =1, Ej =E; 3 (30a)
= [Unbounded as Iﬁ.-ﬁil
J (30b)

increases without limit].
when Ej = ﬁi' vy = 0.
The inverse follows from the composition property by
setting k = i and using Equation (24a).

One may prove the composition property by differentiating

Equation (24b) as it operates upon X%

Now apply the definitional Equation (26) first to the

lefthand side, and then repeatedly expand the righthand
side:




($y5 + ¥y )6xg

= ¢kj[¢j16‘i + (& jS) xi] + (6¢kj)¢jixi

"kj[wji + ‘l'ji)éxi] + wkj[“’ji + i’ji)éli]

(31)

Since 6x; is arbitrary, the compositional Eguation (28)
must hold.

C. The Observation Eguation

Assume that at time tj a sensor measures a subset of

the components of the satellite coordinate vector q and its
coordinate rate vector g—for example, azimuth, eleva-
tion, range, and range rate. Define £ as the vector of true
values of the measured components and y as the corresponding
vector of measurement results. Then

Yy = tj *ny . (32)
where ny is the measurement error vector and the subscripts
note the time of measurement 2,.

30




One may now define a matrix My, characteristic of the
particular sensor making the measurement at ty, by the

q
‘J Mj [":"].- (33)

J
Then one may write Egquation (32) in a more general form, con-

relation

venient for further development:

5% Mj[‘g’]f ny . (34)
J
Table 4 gives examples of My for various types of sen-
sors, all of which operate in altazimuth coordinates ([see
Equation (B)]. That is, the time Ej is characterized by

sensor tvpe, not only as to the measured component-subset of

93, éj (specified by Mj), but also by the curvilinear
coorcinates that qj represents. Not all sensors operate
in altazimuth coordinates, of course. Despite interpreta-
tional differences, the mathematical foam of Equation (34),
and threefold dimensionality of q; theredin, is reasonably
general no matter what the value of %j'

To proceed, assume next that before the measurement
there exists a preliminary orbit determination in the form
®
of a state vector xx{1), Here the asterisk denotes an esti-

mated value and the parenthesized superscript denotes an
initial estimate. (Methods for preliminary orbit determi-
nation are discussed, for example, in Reference 2, Chapters
12 2nd 13.)
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*
Now, given xx (1), one may calculate

*(1) - *(1) & _%
and then, using Equation (21), !!(1) Then one may use
Equations (5) and (7) to solve for estimates of qj and qj.
Let these estimates be denoted q3(1) and q'(1) Finally,
form the estimate

*(1)

q
5 2y |-—— .
J I lgr )

One may then subtract Equation (36) from Equation (34)
to obtain

9-q
Ay.(l) ,

where

by, sy - g2

One can further utilize the known sensor location, together

with the estimated quantities of the preceding paragraph,
to estimate the matrix (03(1))‘1 (see the formulas of
Table 1). 1In the light of Equation (9), one may write the
definition

* (1)
(1) o (p*(1)L |8
Note that according “o Eguation (9),

1
A;j(’lgj-x; ¢

a3

(35)

(36)

(37)

(38)

(39)

(40)




correct to first order. That is, correction terms on the
*

righthand side of higher order in the difference xj - x5

may exist. Using Equation (39), Equation (37) now becomes

-1
s (ot (D) (1)
by. uj(o ) Taxf1) ny . . (41)

J J

Suppose one wishes to find, eventually, an estimate of
-~
the state vector at an arbitrary time t;, an estimate that
is to be an improvement over an estimate that is simply

*(1) _ ,*(1),*(1)
*5 ik *x . (42)

. . 1
One then may expect it to be advantageous to introduce Ali()

as defined by

ijm z (¢;i‘l’ +w;i‘1’)m§1’ (43)
This is a first-order version of Equation (26). The paren-
thesized quantities may be computed from xi(lr. derived from
Equation (42). The quantity 4x; is of course unknown, from

the viewpoint of the satellite observer. 1Its estimation will

be appropriate subsegquently,

Using Equation (43), one finally may obtain from Equatgon
(41) the obseavation equatdion

ij‘l’ - Tgél)Axil) +n . (44)

Here

(45)

-1
*(1) . *(1) * (1) *(1)

k1 |




In the observation egquation, note in summary that one

computes 8y5

(1)

ar

and TJ i

from the observation vector yj

and from the initial estimate xk already assumed to be

available.

The remaining guantities are unknown, although

subsequent analysis will assume knowledge of certain statis-

tical properties of nj.

Further, note that for another observation at,
Em, one will have redefined the quantity 4x;j such that it may

say,

time

have second-order differences from the axj; of Equation (44).

The next subsection will ignore such differences in developing
an iterative procedure which—if convergent—will

eliminate their impact upon an ultimate estimate of xj.

D. JIterative Differential Correction

DPefine the following composite quantities for a set of

n observations:

sy

RISV

by, M)

[ (1)
Tll

— . c———— c——

'(1)
21

i (1) 7

-A"n(l)-

-e

(46)

(47)

(48)



The composite form of Equation (44), j = 1, 2, *-+, n, is
then

(1) _ %01, (1)

Note that this equation places no restrictions upon the
time separation of the sensor observatxons, upon the sensor
"mix"; or even that necessarily t1 < tz < ooe K tn-1 < tn.

Suppose now that one can find an estimator matrix will) (i.e.,

(1)

a function of ‘1) » which yields an estimate of gx;{!) in

Equation (49):
(1) *(l)
[Ali ] =Wy ; (50)

and which obeys the constraint (not an approximation)

Wt ()% (1)

i i = ) . (51)

(The righthand side here is an identity matrix.) The next
subsection will provide a class of such estimators.

L ]
Whatever the specific version of wi(1). one can interpret
the result of Equation (50) as

s ] ¢ ]

using Equation (40). That is [4:1] is approximately an esti-
mate by which the originally given orbit estimate xx(‘) (de-

rived from xk(l) via Equation (42)]) was in error. One might
hope that an improved orbit estimate would be

*(2) _ _*(1) "
'1 = ‘1‘ + [6'1( )] . (53)

36




One can now repeat the preceding process, replacing
x; (1) by x;(2) and obtaining

*
(2) = wut(2), (2)

Continued iteration leads to a sequence

(] * *
), R @ Lo

which may converge, i.e.,

‘Lim [Axi(k)]‘ =0,

kv

(55)
depending upon the form of W and upon the accuracy of the
initial estimate x3(1),

Suppose after, say, k iterations, one stops the iterative
seguence, when there remains the estimated error

(k) < [Axi(x)]' i (56)

Then the corresponding form of Equation (50) is

X oyt )y,

L]

i
= ax (K4 ik, (57)

using Equations (49) and (51). The k-iteration analog of
Equation (40) is now
(58)

Ax{k) & li‘l; v




Y

a first-order approximation that may be gquite good if sub-
stantial convergence has occurred. Substituting into
Equation (57) and rearranging,
*(k)_ * (k) (k
(x; x;) =W, *en- e ) .
This is a result of fundamental importance, since
*
it specifies the error in xj(k)—i.e., the orbit estimate

ultimately obtained from the entire process and that con-

«
tains within it, as a partition, the ephemeris estimate r; (k).

Assume now, and henceforth, that the convergence has been
such that €(X) is small enough to be ignored. Then for
simplicity one may denote xi(k) as simply a; and wi k)
as just W§ (i.e., showing its functional dependence upon x;),
to obtain

* -
(xj=x) =W ;en .,
Later sections will analyze Equation (60).

E. Estimators

The purpose here is to define and discuss—but not
actually to derive—a class of estimator matrices from
which one may select a particular member for use in Equation
(50). The approach here is first to introduce two specific
members of this class, and then to generalize.

Consider a relation of the form

weTu+ {,
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(60)
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in which:

o M is the true value of an m-vector whose estimate p*
one wishes to obtain

© w is a known "measurement®" n~vector (n > m)

o ¢ is a random "error" n-vector, whose value is
unknown but some of whose statistical properties
are known

o T is a known matrix, not a function of y.

One wants to obtain the estimate y* via an estimator matrix W
in a relation of the form

*®
’l .= w"' 3

under some designated optimization criterion.

Moreover, one desires the property that if ¢ is unbiased,
then the estimation error (u* - p) is also unbiased—i.e.,
one desires that W be an "unbiased estimator."

The unbiased estimator property translates into a simple
mathematical constraint. Substituting Equation (61) into
Equation (62),

ﬂ.=WTy+ W .
Then if and only if
' WT =1 ,
(the m x m identity matrix),

- -
V-4 =wg;
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(62)

(63)

(64)

(65)




and if { is unbiased then so is (y* - g). Thus, the
exactness constraint of Equation (64) is a necessary and
sufficient condition that W be an unbiased estimatonr.

To define a weighted least squares criterion for esti-
mation of y*, begin by defining the quantity
L
i.e., a noise-free measurement vector corresponding to g*.
Thus if g* is nearly egual to g, then w* becomes nearly an
ideal measurement. One might reasonably ask that W be chosen
such that the magnitude of w* -w be minimal. One might also
ask that those measurement error components corresponding to
very accurate measurements be accorded the most statistical
weight, That js, one might reguire that W minimize
.n (wr-w.)z
I =25 '
i=] (0.)
i
where (o‘)i is the known variance of the ith measurement.
By carrying out an appropriate minimization procedure
while observing the exactness constraint (see Reference 2,
Pp. 201-203), one can obtain the result

Wis s (W)Weighted Least Sgquares
ta=l gy =1 pta=1
= (TC cT) "TC g

Here by definition Cpg is the n x n diagonal matrix with
nonvanishing elements

= 2 :
(Cyg) , = 00" &
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Several features of this result are significant. First,
it clearly satisfies the exactness constraint. Second, the
statistical properties of { that must be known are its com-
ponent variances (i.e., knowledge of the form of its proba-
bility distribution is not necessary). Third, the form of
Wy g makes the estimation result invariant with regard to
selection of w-component dimensional scale (e.g., km or NM).
(Note that if the weights 1/(0‘)§ are arbitrarily set egqual
to unity as in "ordinary least squares" estimation, dimension-
scale invariance no longer holds.) Fourth, the inverse of
Crs is trivial to find, so that numerical evaluation of
Wyps is straightforward even when the number of measurements
is large.

One may, however, adopt a different estimation criterion, l
and arrive at a somewhat different result. Suppose one
decides to minimize, not the measurement residuals, but the
state-vector residuals—i.e., the individual component
variances of the estimation error (y* - u). For minimum-
variance estimation, one is to minimize each of the quantities

')2' i'l, 2, see

®
(Ui - ul

’

again observing the exactness constraint.

If one carries out an appropriate minimization procedure
(see Reference 2, pp. 185-192) assuming now that the “"true"
{ covariance matrix D is }nown, one can obtain the result

wMV £ (")Minimum Variance (69)
= (tTp~1p)"1 otpl .
41




Significant features of this estimator are as follows.
First, it clearly satisfies the exactness constraint.
Second, the statistical properties of { that must be
known are its entire covariance matrix (not, as for Wig,
merely the diagonal elements of D). Third, Wyy provides a
result that is properly invariant with respect to dimen-
sional scale changes. Fourth, the inverse of D may not be
trivial to find when the number of measurements is large, so
that numerical evaluation of Wyy may not be straightforward.
Fifth, the vaaiance of each component of (u® - pl {4 4indeed
minimum {or Wyy, as compared to the (y* - p)-component var-
{ances of any other estimator (including Wy g). However, how
can one obtain D with assurance?

In fact, D will not be exactly known in practice, but may
be approximated by some matrix C that must be real, symmetric,
invertible, and have positive diagonal elements. Then the
practical estimator will be

we= (r7c7ir)"d otc?
This reduces to Wpg if C = C;5, and Wyy if C = D, but in
fact represents a class of estimators where C is selectable.

Ease of calculation and estimation accuracy both depend upon
selection of an appropriate C.

One may show (see Reference 2, p. 202) that the esti-~
mator of Equation (70) results from minimization of the
quadratic form

(wo-amtcd(w- TH)

subject to the exactness constraint. This generalized opti-
mization criterion is known, somewhat confusingly, as the
weighted Least squares cariterion.,
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wWith regard to the preceding subsection, the following
correspondences hold for the kth jteration:

. (72)
ax) et

Ay —w (73)

N H (74)
R S

i (75)
W L

(76) ‘%

Note that since a value for xj(K) is assumed as an input

to each iteration, T;(k) z T(xj'X)) is a known quantity as
assumed in the minimization of the quadratic error expression
of Equation (71).

The preceding discussion has not addressed three key
guestions. Does convergence occur, in the iterative dif-
ferential correction process, for an arbitrary selection
of C? 1f, for a given C, convergence does occur, does it
necessarily yield a unique x;? (That is, does Eguation
(60) have more than one solution?) 1If ;; is unique for .
a given C, what is the minimization criterion to which xj
corresponds?

In fact, convergence may or may not occur for a given
selection of C. Further discussion of this topic is beyond
the scope of this paper.
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One may show, however, (see Reference 2, pp. 437-440),
that if convergence does occur, the limit x; 25 unique for
that particular C. Moreover, the resulting xj minimizes
the quadratic error expression of Equation (71), wherein T

*®
is now to be interpreted as T(xj).

Note, in closing, that all of the analysis of this sub-
section presupposes that the correct functional form of T
is known. ’

F. Calculationa) Strategies for Ephemeris Estimation

Suppose one must obtain ephemeris predictions for a se-
qguence of times Ek. k=1, 2, ...—that is, suppose one
must obtain a number of estimates x; from a given set of {

measurements. Suppose, moreover, that during the time in-
terval of prediction, additional measurement data ﬁccasionally
become available., ©One then desires to obtain a revised set
of predictions x) in near-real-time with the arrival of

new data.

Calculational efficiency of ephemerides now becomes an
issue: 1is it necessary repeatedly to carry out the full
iterative differential correction process for each x;?

Calculational strategies do exist to alleviate this prob-
Jem, at least under some circumstances. The first strategy
simplifies calculation of a set of xx from a given set of
measurement data. The procedure is first to find one statce-
vector, say x:. via iterative differential correction, and
tren repeatedly to utilize the relation

e L B e
’k -.ki .1' k.llz....‘ ‘77)

(see Equation (42)).
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One would hope to obtain in this manner—independent of
the choice of i—the same set x; as by direct use of
iterative differential correction for each x;. A proof of
this eguivalence will conclude this subsection. The strategy
of Equation (77) is of quite general utility, involving no
restrictions as to the nature of C employed in W [see
Eguation (70)).

Two further strategies, the "Bayesian filter” and the
"Kalman filter without driving noise,”™ do involve such re-
strictions. The purpose of those strategies is to minimize
the recalculation of x} for Equation (76) when, from time
to time, new measurement data become available., The key to
their utility is treatment of each batch of new data as
having errors uncorrelated with errors of all previous data.

Thus, these strategies are useful for particular, block-
diagonal forms of C. For such forms, these strategies provide
estimation results more expeditiously than, but identical with,
complete "brute force" re-estimation of x; from o0ld and new
raw data for a given C. Reference 2, Chapters 10 through 12,
contains a detailed discussion of the Bayesian filter and the
Kalman filter without driving noise. Their further discussion
is not appropriate here.

*®
The promised equivalence proof will demonstrate that x
is identical, whether arrived at by iterative differential

correction or indirectly via Equation (77). That is, sup-
pose that 1terat1ve differential cortect1on yxelds directly
at tk a value xk, and directly at ti the value !1' whence

a value xk obtains via Equation (76). The problem is to
prove that




Now from Equation (60),

R, v X, =W. .0 , (79)
and

'y} s

lk —lk=wk n . (80)

. * * .
where the W-arguments are respectively xj and xx'. Given
Equation (77), then by Equation (26) to first order

* *®
- = - L4 - 81
x ~ *x xi®(xg = %) (81)
where
. *
ki T ki t Vi - (82)

*
Premultiplying Equation (79) by = xi and combining with
Equation (81),

'k "k T T Wit W (83)

Now from Eguation (70) and the correspondences of Equa-
®
tions (72) to (76), the general form of W; is
* *f =] *\.] *4 o
W = (T.*C 1T ) 1, %t -1

Using this, one may expand the lefthand side of Equation (84)
as follows:
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* ® -1 *\=1 *t o]
ki W= Ty (e ot

I}
=,
>
\

(rifetny- =) [(=d) - (=) ) et

= [(T: . E';i)*c-l('r; : E:.k)] (T: . Ezk)fc-l . (85)

The last step involves substitution of two subsidiary rela-
tions. The first is

"] *

ki ° =ik ’ {(87)

a restatement of Equation (29). The second is*

(3;;)-1= (_k;1>¢ . (87) t

Now from Equaticns (45) and (47),

. = = 88
Ty " 2= T - (68)
Substituting this into Equation (85), one finally has
_* f -1 -1 *t .~-1
(89)

*
= Wk )

* This relation holds for any invertible matrix A. Taking
the transpose of both sides of

one has
aHtater .

Hence (A").r is the inverse of A*, as in

(A.l)* - (A*)"l .
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using the definitional Egquation (84). Upon substitution into

Equation (83),

» *
'x"k'wk°" ’ (90)

a relation identical in form with Equation (80). But as stated
earlier, such an eguation has a unique solution, and Egquation
(78) therefore must hold. This completes the proof as reguirec.




III. EPHEMERIS ERROR PREDICTION

The preceding chapter describes linear-algebra method-
ology for estimating Keplerian satellite ephemerides from
sensor measurements. Specific estimation techniques within
this methodology depend upon selection of a matrix C, which
is some approximation to D, the covariance matrix of measure-
ment errors [see Egquation (70) ff.].

The purpose here is to develop equations for estimating
errors in the ephemerides that would be arrived at by the
methodology of Chapter II.

Of the five ensuing sections, Section III.A defines the
error estimation problem in terms of inputs and outputs.
Section III.B derives equations of the general solution,
expressed in terms of the covariance matrices C and D.
Section III.D introduces specific representations for C and
D. Section III.E details the equations of the general
solution in terms of those representations. Finally, Section
III.F defines and discusses the ephemeris error eguations
underlying the computer model SEEM.

The general solution of Section I1I1.B here is well known
[see Equation (16), Reference 4). A contribution of this
analysis is the representational discussion of Section III.C,
and specifically the analytical matrix-inverse given by
Equations (143) and (144). When used in the estimator W, it
affords calculational efficiency plus some accuracy improve-
ment over the conventional least-squares approach to emphem-
eris estimation.

The ensuing analysis assumes reader familiarity with
covariance matrix theory as reviewed in Appendix A.
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A. The Error Estimation Problem

This section defines the ephemeris error analysis problem
in terms of assumed inputs and reguired outputs.

7. Assumed Inputs

Assume that the following inputs are available:

a. The epoch set ty, k = 1,2,..., for which ephemeris
errors are desired

b. A state vector x, corresponding to some epoch Eo
(affording a complete specification of the "true"
orbit of the satellite)

c. For each Ej at which a measurement is made, the set '
of quantities [see Sections II.A and 1I1.C):

qjl qjl Mjr Aj' ¢Jl ’Tj

(affording a description of "true" observables,
the subset of these actually observed, and the sen-
sor position)

d. For each sensor the functional forms of Table 1
necessary to evaluate the matrix 051 from Q5. éj
(affording subsequent evaluation of Tji(xj) [see
Equation (45)])

e. Relative to the measurement error vector jp: its
“true”™ covariance matrix D; its covariance matrix
representation C used in the estimator W; the
assumption that 7 is unbiased, i.e., that § = 0,
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The prior generation of input c¢. from appropriate sensor
characteristics is a standard space-surveillance problem not
within the scope of this report (although the equations of
Sections II.A and 1I.B are useful in solving that problem).

The assuwmption of e. that 7n is unbiased is subject to
the following interpretation. Suppose each observation
error-vector 74 [a partition of n4: see Equation (34)]
is what remains after application of calibration, atmospheric
refraction, and other known bi{as corrections to the raw ob-
servation data. The error 7n5j then comprises "noise™ and
"residual bias" contributions (see Section III.C). 1If the
probability distribution of each of these is symmetric about
zero, then ﬁj = 0 for each Ej and hence 7 = 0.

2. Desired Outputs

Let Sx denote the covariance matrix of the error (xf - xk).
Let ¥Syx be the upper lefthand 3 x 3 partition of Sy; i.e.,
let the elements

(’sk)lnn = (sk)m; m,n=1, 2, 3 .

Then TSk is the covariance matrix of ephemeris error, since

tsk E {(l; - 'k) (x;-xk)+}

[y

e r r' r ¥
=g || X __K]|_k_X
X 3 . o® v
e = "%l P "y
* 1 .
- - + - . - st
(rk 'k)"k r k)| (rk tk)(tk rx)
- E c-.—.—---——————— _--—_—.——__. .

(91)

(92)




Desired simulation outputs are

a. The matrices TSy, corresponding to the desired
epochs ty, k = 1,2,...

b. "Error ellipsoid" interpretation parameters (orien-
tation angles, semi-major axes) for each ¥Sy, where
orientation is specified relative to the UVW reference
frame [see section 1.A].

Note (see Appendix A) that the interpretation of FSk in

terms of an error ellipsoid centered at ry is legitimate

only when the probability distribution associated with

(rgy = rx) is normal and unbiased. This condition is met whenever
the probability éistribution associated with n is normal and
unbiased, since by Equation (6”) the error (xx =~ Ay)

[containing (r§ - rx) as a partition] is a linear

transformation upon n.

.B. General Solution

The purpose here is to derive general equations giving
desired simulation outputs as a function of assumed simula-
tion inputs.

Consider Egquation (60), written for an arbitrary epoch Ei:

Subsection 11.F has established the formal invariance of this
first-order approximation [see Equation (58)] under the epoch
trznsformation Equation (26), itself induced by Equation (21).

The theorem represented by Equation (A-18) allows one im-
mediately to write

. oy
B, =W, DW,
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The lefthand side is a desired simulation output, but the
*

righthand side depends on the quantity xj—according to

Section III.A, not an available input.

But via the Taylor expansion in vector form,

*® - [ ]
Wi = W(‘i) 1
aw *
#F W(x,) + |— (x, - x.) ,
1 [ax;] i 3 (95)
X

i
One can see that the order of approximation of Equation (93)
is preserved in writing

X, = 'i =W. N . (96) {

*
The Wi here is a function of xj, not xj:

Wy

w(xi)

(": ¢t Ti)-l A

(97)

.

(see Section II.E), with T; a column matrix whose general
partition is

(%), = % 65 =3

{see Equations (45) and (82)), where

31 " g1 * Vg o
Evaluation of Equations (98) is for

.j - .jo lo '




Thus
S. = W 13\'~"t ? (100)
i i i
‘i
and since
* - -
el Tl TR LT PR (101)
one has
s, ==, .8, z.t
k = ki ®i “ki (102)

Equations (100) and (102), together with Eguations (91), (97),
and (98), give tl.e desired outputs a. as a function of the
assumed inputs a., b., c., 4., angd e.

It remains in this subsection to obtain the outout b,
from Ysy expressed thus far relative to the inertial (xyz) frame.

By Equations (13) and (A-18),

[rsx] =1 %5, 1 . ,_ (103)
UvW .
Diagonalization Of[fsk]uvw' if carried out by an appropriate
numerical procedure, yields eigenvalues (g 1)<, (02)2. (c3)2
ané corresponding normalized eigenvectors, which one may denote
as ¢y, €2, €3, According to the analysis of Appendix A,
the semi-major axes of the "1-¢" ellipsoid have values 0y,

o203
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Ore way to interpret the ellipsoid orientation is as
follows. Pick the first eigenvector ey, and denote the
angles between ey, and U, V, W as 041, €42, and 043, respec-
tively. Then

= 1
cos 04, € v,
cos O = e* v
12 1 ’
cos O,., = e1”“ﬁ
13 1
where
1 0 0
U=1}0 ’ veEll v W =10 .
0 0 1l

These are the direction cosines of the orientation of the
oj-axis of the error ellipsoid. Note that one may
arbitrarily change the sign of e if ease of interpreta-
tion of the angles is improved thereby. Such a change does
not upset the normalization of ¢1 and physically means

that one may take either of the "0j-ends" of the

ellipsoid to be "positive."

One can interpret each of the remaining eigenvectors
similarly, .completing extraction of desired outputs b.

C. Measurement Covariance Matrix Structures

The purpose here is to introduce some candidate algebraic
structures for the "true" covariance matrix D. These, perhaps
with still further approximations, are also candidate struc-
tures for C.
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The first of the following subsections introduces struc-
tures by consideration of the "noise" and "residual bias"
concepts menticned earlier. The second subsection further
details this structure into a form which, although of
limited generality, does permit analytical extraction of
the matrix inverse—~—of importance since one would like
to use W with C = D.

l. Basic Structure

Leg each observation epoch ;j now be denoted as QE?,
where o indexes the sensor making the measurement; m indexes
satellite "pass™ through the field of view of that sensor;
and j is now to be regarded as indexing an observation

within a pass.,

Consider the structure of D first with regard to parti-
tions corresponiing to each observation epoch %M, and then
with regard to the "microstructure” within such partitions.

a. The General Observation Partition

Let the observation error vector an? correspond to
the epoch ®*tT. Let the ordering of the ®nT within the

composite vector n [(see Equation (48)} be hierarchic, such
that a varies the slowest, m the next slowest, and j the

fastest. The ordering of other composite vectors and of the
matrix D will of course correspond. Note that freedom to
select this indexing hierarchy exists, since up to this
Eoint the analysis has not restricted interpretation of

the seqguence Ej (see I1.D).

Now introduce the decomposition

SRR
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wi’ . the regquirement that the term ue? account for any cor-
relations that may exist from one observation to another.
That is, av? is to be interpreted as a "noise" term and 06?
is to be the "residual bias" term within un?. It follows that

2{(07) Eo3)"

a

a.m
= Gj 6&8 mn ij '

where
m

3 =1(+3) (3)

Mathematically, this decomposition entails to this

point no loss of generality. Physically, the desirable

uy? result from random receiver

G

interpretation is that the
and possible random external noise sources, with each
"observation” actually deriving from some small data set
such that, for appropriate observation spacing, Egquation
(107) holds. This physical interpretation clearly implies
some practical constraints as to signal processing, and
moreover implies that always GG? is positive definite.

Regarded as residual bias errors, the c‘? by contrast
will be correlated with each other from one observation to
another, at least for observations not too widely separated
in time and made by the same sensor. Thus, one might set

w{5) Cea) - o 2|0 30N

a
508“’;\;'

assuming no correlations from one sensor to another.

57

(107

(106

(109

(110




Then by the symmetry of Egquation (110),
amn _ 6.nm
jk ij o (111)

Also, °H?? will be non-negative definite, taking into ac-
count that residual bias errors may sometimes vanish.

Finally, assume that the noise errors are uncor- .
related with the residual bias errors:

IR

Taking all of these relations into account, the

(112)

general observational partition of D is then

(113)

af.mn _ a_m\[(E.n\t
5 = £4(n3) ")
(114)
a.m a,mn
=6, ( 63 6 S5k * ij) ,
with
a8 .mn _ Ba _nm N
Dsjk ® Pk (115)

The resulting D is—as required—real, symmetric, and
irvertitle, and has positive terms on the diagonal.

Note that sufficient conditions for y to be unbiased
are

}',;‘ =0 (116)




ansa——

o _m .
. = 0 . (117
€3

Physically, one can regard these as averages for each sensor
over large ensembles of observations, with probability dis-
tributions symmetric about zero.

b. Microstructure

Now consider the problem of representing structure
Cor . a,.m a_mn .

within the matrices Gj and Hjkx. As will soon appear,
there is a problem in establishing a reasonable notation in
which that structure may be specified. This problem will
receive primary attention here. Possible functional depend-
encies of certain quantities will receive limited considera-
tion.

In the present notation, observables at a%? are “q?
and ué?, representing a range and two angle variables, and the
rates thereof. Some subset (possibly all) of these six guan-
tities is actually measured, resulting in the errors of Equa-
tion (106). If one indexes the components of that Equation
by P P= 1/2,..., < 6, then*

°n'“) - (%'!‘) + (“J‘) .
( 3/p 3/p I/p (118"

One may now introduce a useful representation for

“Cg‘as follows.

* The index p relates to the components of aqm and °ém not
directly, but via the sensor characterization matri; °M?,
previously denoted M4 [see Equation (33)].
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: . .. a m
Define a matrix of standard noise deviations vijg
as having the general element

a.m
cgm = 3§ (0-) ’ 119
(vjq pa\v 3/ (118)
where

(e FHERENT” -

(Here g = 1,2,..., an index having nothing to do with the
vector q.)

Define a matrix of noise correlation coefficients
am
vRy as having the general element

a.m
(ij> =l,p=q i (121a
P4

otherwise

oy 2105 05
(v“a‘)pq (5. (43), ' (1215

Then from Equation (108),

e.m m, a QM
Gj'gzj vy TvEy e (122)
This representation of °cg‘:eparates the standard deviations
of the components of °b? from the correlations among them.
One may expect that the correlation matrix will depend upon
the control-system design of the specific sensor a. If the
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components of au? are uncorrelated, 3R? reduces to the iden-
tity matrix. One may further expect that the size of the
standard deviations of error components will depend in general
upon sign%} strength and receiver noise. That is,coHe gfgects
that vzj will be a sensor-dependent fgnction of 435, 93,
and perhaps also of some parameter set § associated with the
target—e.g., radar cross-section.

, mn .
A representation for °ij, analogous to Equation

(122), is obtained as follows.

Define a matrix of residual-bias standard deviations

a_m
e:zj as having the general element

a.m a.m 123)
z.) = § ( o.) R (
(C J Pq P4\€ 3 p

where

), s [F1en e -

Define a matrix of residual-bias correlation coef-
o mn
ficients chk as having the general element

gy = 1 if p=gand m=n and j = k;
€ jh Pq

otherwise

aem) (acn)
/p kA_ (125)




Then from Equation (111),

n
3k ™ Xk .

eomn S M amn €
H ch R cZ
As before, this representation separates the standard devia-
am an
tions of the components of €4 and €y from correlations
among them. If the standard deviations of residual bias do

not change with time,

am a_n
<«

€”3 czk ‘

Bowever, this may not be the case, as when atmospheric re-
fraction corrections are imperfect at low elevation angles.

a _m am
Then ¢ 24 is a function of Q5 and Equation (127) is
only an approximation.

o mn
The form of the correlation matrix ¢Ryx will depend
upon the sensor. Its elements will tend to diminish for

aann

Q.
large time separations | ty - tx|. For small time sep-

arations one may expect that
a,.mn a.mm
eFik ® ey .
1f the components of GJ are uncorrelated among themselves,
then RJk will be diagonal and ;RJJ will be the identity
matrix,

2. Further Structure

The purpose here is to introduce further assumptions about
the structure of D that promote ease of inversion. All, some,
or none of these further assumptions may be valid for a given
problem.
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[T A ity

a. Occasionally Decoupled Passes

Suppose for sensor @ there exists some time interval

o ) . . . :
Tzeros Which is the minimum separation between observations

over which residual-bias error correlations vanish:

€ jk b 3 zero {129)
Then by Eguations (114) and (126), a condition on the general
observation partition of D is
a mn aam aan
(130)

“

Of interest here is the case where the separation be-
tween passes by sensor o occasionally exceeds aTZQIO' (That
is, the assumption is not made that every a-pass separation
is larger than QLTzero.)

To arrive at an appropriate mathematical formulation
of such a situation, define an index L = 1,2,..., which
counts pass separations for which

asm+l _a.m O
t) t 2 Tiero (131)

Here “tM1 js the first observational epoch of pass m+1 for

sensor o, and atM is defined to be the last observational

epoch of pass m.

Such pass separations decompose the G-pass sequence

into a sequence of "multiplets,” each comprising one or more
passes. Hence one may consider L to be the index of de-
coupled pass multiplets.
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Now L is an index dependent upon o and m:

L=1L(a, m) . (1322

One may express the functional dependence upon m recursively.
Let

L(a, 1) =1 . (132b

For arbitrary m, if Equation (131) holds

Lc, m+ 1) =L(a, m) + 1 : (1332
otherwise
La, m+ 1) = L(a, m) ., (133b
Now let
e s {0t} (134a

under the constraint that passes m and n are in the same
multiplet:

L{a, m) = L(a, n) . (134b

The assumption of occasionally decoupled passes is just

6.mn al
ij = 6L(a, m), L(a, n) H?n * (135)
{see Equations (126) and (129)]).
Utilizing the redundancy
cnn * ‘L(Gt m), L(a, n) ‘-n ’ (136)
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one may now write Equation (114), subsuming Equation (130), as
aBpmn _

a.m alL,. mn
jk’ af 6L(u, m), L(a, n)( Gj Smn Gik * ij) ) (137)

Thus D is block diagonal. 1If the blocks of D are denoted alp,
then the problem of inverting D reduces to that of inverting
the set of smaller matrices ®ID.

b. S8Strongly Coupled Passes

Suppose for each sensor o there exists some maximum
time interval®t gpe, for which residual-bias error standard
deviations and correlations are invariant—i.e., Equations
(127) and (128) hold when
asam _ asn a |
1765 - el € Trope (138) |
In particular, suppose % gne is greater than the
duration of any pass multiplet as defined in the previous
subsection. Then Equation (138) holds whenever

L(up m) = L(u, n) (139)

and over each multiplet one has an invariant matrix

oL, - aL.mn
HE "Hye oo (140)

One may refer to this as the assumption of strongly coupled
passes.

A necessary, but not necessarily sufficient, condition
for the existence of multiplets that are each strongly coupled

internally, yet are decoupled from one multiplet to another,
is that

@ . 141
Tone ¢ Tgero (141
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For example, ifllfzero happens to be one satellite period,
then each multiplet can comprise but one pass. For a low-
altitude satellite, if %t 36,0 ~ 12 hours, then each multi-
plet might consist of a pair of passes on successive revolu-
tions. For some problems, Equation (141) cannot be satisfied
for multiplets.

When, however, Equation (140) is valid, substitution
into Equation (137) yields

GBDm Iy

= s . al
jk af GL(u,m).L(u,n)(G‘;Gmnsjk*' H) *

When D has this structure, the general observational partition
of its inverse turns out to be available analytically:

aBf -1\mn _
(D )jk 648 %L(a, m), L(a, n)

amy=-1 - [e~m\-1 oL, oL, fa.n)\-1
N[ R o R

where

-1
aL (a, m)U = [1 + GLH!'ZiGL(u' m) L(a, l)(c'Gi) 1] .
’

These expressions for uB(D“)?? constitute a general-
ization of the results of Appendix C. That appendix derives
the inverse of a matrix having its general partition of the
same form as

a.m al
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[see Equation (142)], but with the restriction that °c§‘ and
oIy must be diagonal. That restriction allows those two
matrices to commute.

However, the result of Equations (143) and (144) em-
bodies no such restriction, as one may show by proving that
those Equations yield the proper result for an inverse:

oy, mL aB [ =1\ n
D.. o D . 6 6 . .

vg-i ji ( );k = 8op %mn S5k | (145)
The proof proceeds by direct substitution of Equa-

tions (136), (142), and (143) into the lefthand side here:

a.m . Yo\l
I 85y G5 8pg 645 513( Gi)_ $en ik

-1 -1
a.m . YRR al,. al. [8.n
=i %y C5 fme 851t Oy “L(v.u.ue.m( Gi) o o Gx)

] s 6 oLy .5 (et s, e
+y£i ay °L(a, m), L(y, %) v8\ “k &n ik

aL

-1 -1
H 9.) el uLa(B Gn)

. Y
-1 fay i@, m, Ly, ) *ys GL(Y,l),L(B,n)( ¢ X

y&i

6t:B 6mn ij

Sap 6L(c:.m).l-(ﬁon) )
-1

al a.n

+ GCB SL(QIN)J L(a, n). H.(Gk)

°a3(21 $t(a, m), Lia, t)°

. (BG:).l . (146)




The last term here is a sum over just the multiplet L, and

has no nonvanishing terms over that multiplet. Since GLH and
ly are constants over the multiplet, one can factor them from
under the summation. Moreover, one can see (via a "truth i
table" analysis) that '

GL(u,m),L(u,!) GL(a,Z),L(u, n)‘GL(u,m)L(u,n)GL(u,m)L(a,l) * (147)

Hence one may continue to develop Equation (146) as #

= suB 6mn 6jk

al, alL al
+6aBGL(u,m)L(u,n)[- U TH+ TH+

-] -1
aL a8 aL, ., olylfagn
- H(:in 82 (e ms Lia, 02 3) > ’ H]( G")

© 608 6mn ij

falL
+ ‘aB‘L(u,m)L(a,n)[ H+

-1 a1
- el , agt) “\.ely . elyl(egh
(14‘ H lziGL(g,m)L(u.!-)( Gi) ) v H]< k) (148)

= Gcﬁsmnsjk ,

as required. The last step above resulted from substitution
of Equation (144) for °lu,

With regard to Equation (143), note that D~ reduces
to a form block diagonal in (%)™ if 11 the ®M happen to
vanish. Thus, one may regard D! as the 8ifference between
a "noise” covariance matrix and a "residual bias®" correction
matrix, respectively the first and second terms of Equation (143).

:
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D. Some Expansions of the General Solution

The calculational efficiency of state-vector estimation
depends upon the degree of difficulty of extracting c-1 in
the estimator W; [see Equation (70)]. 1In "least sqguares"
estimation, C is taken to be diagonal—or at least block
diagonal, where each block dimension is of the order of the
observation-vector dimension. Such a C may be very different
from D, if the latter contains extensive correlation terms
among residual-bias errors. Then resulting ephemeris errors
will be worse than the optimum (minimum-variance) errors when
C = D.

Of course, one may choose C to be a better approximation
to a highly correlated D, but generally at significant cost in
calculational practicality.

The purpose here is to find explicit, detailed represen-
tations for Sj, the covariance matrix of state-vector
errors, for various combinations of some possible structures
for C and D. Each S; representation will exhibit a char-
acteristic level of approximation to the minimum-variance
form (when C = D) and will also afford a characteristic
level of calculational efficiency not only for Wi, but
also for Sj.

Structures of D considered here derive from the previous
section. Structures for C considered here also derive from
the previous section, but will occur in a distinctive nota-
tion in order to avoid confusion with D.
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In the interest of notational simplicity, the ensuing
expansions of Equation (100) will omit the subscript {. The
guantities S, W, and T are still to be understood as corre-
sponding to the estimation epoch %1. The indexing conven-
tion of the expansions will be the same as in Section I11.C,
i.e., it will correspond to the observational epochs %tT.

Results will occur as formulas.for x-1 and 2z, where

Xz (:r" c™1 r)'l (149)
and

2z (ctr)to(cln) . (150) \
Then, taking into account the symmetry of C,

S = X2X . (151)
Also,

~1
W= x(c 'r) . (152)

Note that if C = D, then § = X. Thus X is the covariance
matrix of state-vector errors for the case of optimal,
minimum-variance estimation. Accordingly, ZX (or XZ) is the
matrix factor on X by which § falls short of optimality.

Numeric inversion of X~ to yield X is not ordinarily a
significant calculational problem, since X is only a 6 x 6
matrix and need be inverted only occasionally ([see discussion
of Section II.E and Equation (102)]. Hence, one may regard the
calculational difficulty of finding W and 5 as effectively as
that of finding X~! and Zz—the latter of course con-
taining C-'T [see Equations (150) and (152)].




N

Table 5 gives seven combinations of structure assumptions
for C and D, along with appropriate analytic expressions for
c-1. Table 6 gives corresponding formulas for x-1 and z.

The notes in Table S pertain, first, to calculational
ease of finding X~ and 2z, given a set of measvrement cata;
and second, to ease of recalculating X~' and Z as new
measurement data become available. Additional comments upon
each case will conclude this section.

Case 1 imposes no restrictions upon C or D, except that
all error correlations vanish from one sensor to another.
These matrices are then block diagonal, respectively, in
partitions %C and %. The formulas for X~! and Z are alge-
braically simple but calculationally complex, reguiring nu-
meric inversion of the large partitions °C.

Case 2 introduces the structure of Eguation (114) for D,
and a similar structure for C in terms of QE? (analogous
to “G?) and QF?Q (analogous to GH?Q). These structures
improve the physical interpretability of C and D, but are
generally still not calculationally practical in that inversion
of each of the large partitions 0‘C is still necessary.

Case 3 reduces C to a form block diagonal in QE?, resulting
in a least-squares form of W. However, careful inspection of
the expression for Z in Case 2 will reveal that the generality
of the D-structure places significant demands upon computer
memory in recalculating Z as new data become available.

n
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Case 4 begins a different type of structuring, relative
to Case 1 as a baseline. A pass-multiplet structure for C
and D substitutes the problem of inverting the partitions al
rather than the aC. The aLC tend, however, to still be of

c

large dimension.

Case 5 is the pass-multiplet analog of Case 2 and is
calculationally not greatly advantageous to Case 2.

Case 6 introduces a structure for C analogous to Equa-
tion (142) for D. The inverse of this structure exists in
simple analytic form and makes calculation of ¢! only
slightly more involved than for the least-sguares Case 3.
Thus, the inversion Eguations (143) and (144) effectively
afford a limited, calculationally efficient generalization
of least sguares estimation.

With Case 6 as with Case 3, however, the general form of
D does impose some calculational penalties in regard to Z as

new data become available.

In Case 7, both C and D have the structure of Eguation
(142). Calculation of 2 is thereby considerably simpler.
(Further specializations of Case 7 will appear in the
next section.)

E. The Computer Model SEEM

The purpose of this section is to describe the analyti-
cal basis of the computer model SEEM (see Chapter I). A
further purpose is to provide some numerical outputs
of SEEM as examples of calculational results obtainable
using the analytical formalism of this report.
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1. Analvtical Basis of SEEM

The approach here is the further specialization of Case 7
of the previous section.

For D, assume that each pass multiplet is a single pass.
Further, assume that ®LlB is the same for every multiplet.

Then one may write

af_mn

D §

= §

a.m [+ 3
i a8 San < GJ + a) . (153)

jk

Make further assumptions about the internal structures
of ®GT and ®H. Assume that within any given observation
the noise errors are uncorrelated with each other and the
residual bias errors are uncorrelated with each other. Then
both SR? [see Equation (121b)]) and SR?E [see Eguation
(125)] are identity matrices.

Then from Equations (119) and (122), the general element

of 06? is

2
a.m a.m
( G.) = § ( o.) -
J/pg PV I (154)

From Equations (123) and (126), the general element of
a .
B is




SEEM at present provides for just one sensor type, radars
operating in altazimuth coordinates (see Section II.A).* The

noise-variance components of Equation (154) become

(3"""); “(30) - aseos m?

J (156)
2 2
a_m a
(v"j)z “Qen) (157)
(aom 2 -(ao 2
v 3j 3 VP, . (158)
Here X, h, and r respectively denote azimuth, elevation, and
range, and the symbol 0 on the righthand side represents a
constant for a given radar. The factor (1/cos h)2 in
Equation (156) accounts for the loss in azimuthal accuracy
at high elevation angles.
SEEM assumes the following for the residual-bias variances
of Equation (155):
2 2
(20), (20"
1 \¢ (159)
2 2
(), =Gy
2 \¢ (160)
2 2
(“o '-(°o )
€ 3 A/ * (161)

* One may also, by an input strategem, make SEEM accommodate
altazimuth-coordinate telescopes. The strategem is to
assign a very large value to (g2 of Equation (158),
thereby assigning range measurements negligible statistical
weight.
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Again the ¢ symbols on the righthand side are constants
for a given radar.

As regards C, SEEM provides two options. The first,
a "least squares®” option, is

6 6. %" .

- ,
Ls)jk aB "mn 3k T Jj

The second, a "minimum variance" option, is
aB<C )mn - cSDmn
MV ik jk

Appropriate manipulation of Case 7 results of the pre-
ceding section then yields for the least squares option

Sus = ¥Ls * X [E lzn(uvm B “v“‘)]st '

where

and

For the minimum-variance option,

SHV = xMV ¢

(162)

(163)

(164)

(165)

(166)

(167)




where
B LIS () o)
+] z(%m* %™ %y “v’“)
G m
and

R (R

Evaluation of the QT? in these expressions is via Equa-
tions (98), since Ty there was redesignated at QT? in the
notational change of Subsection III1.C.1. On the righthand
side of Equation (98a), the My is the "radar" entry of
Table 4. The Qj" are those of Table 1, as specialized in
Table 2. Appendix B gives expressions for ¢ji and *ﬁi of
Equation (98b).

Thus, SEEM evaluates Spg or Syy as S; at an appropriate
time Ei. Equation (102) then yields Sy at requisite pre-
diction times ZK, k=1,2, ... n. For each Ek. SEEM ex-
tracts sy from S; [see defining Equation (91)) and then
obtains [?Sx]uvw via Equation (103), evaluating the rotation
matrix L as developed in Section II.A.

The diagonal elements of [?sk]uvw are the variances
°§U' °§V' Oiw. respectively the radial, along-track, and
cross-track component variances of the ephemeris vector at
tx. The resultant-vector variance is

2 2 2 2
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SEEM outputs 30k, 3ckys 39xy. and 3ok for the predic-
tlon tlmes tx, k = " 2' s oo g Ne.

As it is now programmed, SEEM does not obtain the prin-
cipal axes and orientation of the ephemeris error ellipsoid
by diagonalizing [tsk-]uvw' etc. However, for near-
circular orbits this ellipsoid tends to be oriented along
the UW coordinates, primarily because of the effect of
period uncertainty, which makes the along-track error ordi-
narily large compared to radial and cross-track errors.

Thus, for near-circular orbits one may regard 3oyy,
3oxys, and 30k as approximately the principal dimensions
of the 60.8-percent confidence error ellipsoid (see Table A-1).
The resultant 3cyx is the exact RSS dimension of the ellip-
soid, since the trace of [rsk] Uvw 15 invariant under the
coordinate-frame rotation of diagonalization.

2. Representative Ephemeris Error Results of SLEM

This subsection gives representative graphical outputs
of SEEM. All outputs given here correspond to a satellite
in circular orbit at an altitude of 400 km. The epoch t =0
is that of "launch," when the satellite initially appears in
orbit.

Sensors are altazimuth radars, with hemispheric coverage
down to a minimum elevation angle of 7°. Maximum range is
set, not by radar capability, but rather by horizon line-of-
sight cutoff at minimum elevation. Sensors provide measure-
ments a3t 6-second intervals while the satellite is within
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coverage. For "nominal"™ measurements, "noise" and "residual
bias" standard deviations are those of Table 7.

SEEM output graphics of Figures 3 through 6 correspond
to the specific input conditions of Table 8. Figure 3
represents a pass through radar coverage about 15 minutes
after "launch."™ Error plots commence a few minutes after
the satellite exits coverage, simulating a data-processing
delay in availability of estimated ephemerides.*

Note that for this case, minimum~variance estimation
yields little accuracy improvement over least squares
estimation,

The error curves of Figure 3 exhibit several typical
features that deserve comment. First, the cumulative
growth of along-track error is what one would expect from
error in estimating the satellite period. By contrast,
the radial and cross-track errors repeat with each satel-~
lite revolution. Thus, along-track error soon dominates
the resultant error.

Second, all error components contain the satellite period
(100 minutes) as a fundamental harmonic, with minima at or

near one-period intervals from the radar pass. This be-
havior is not surprising, since the radar pass corresponds
to a point in inertial space where position is actually
measured, i.e., where both estimated and true orbits are
closest together.

®* In Figure 3, the width of the "radar coverage rectangle”
denotes time in coverage, but the height of the rectan-
gle has no interpretational significance.




TABLE 7
“NOMINAL"” STANDARD DEVIATIONS OF MEASUREMENT

«Coordinate Noige Residual Bias
Q a .
Azimuth vcx = 0,05° ecx = 0.05
Elevation :oh = 0,05° :cx = 0.05°
Range :op = 50 m. ’éop = 50 m. 1
TABLE 8

INPUTS FOR SEEM EXAMPLES

“ e ¢ .
igure Std. Deviations of Measuremen Pass lstmatéon
i Metho
Nurber Noise Residual Bias Spacing
3 ; Least
(Solid Curve) Nominal Nominal -— Squares
3 5 Minimum
(Broken Curve) Nominal Nominal - variance
4 Nominal tero -— LS and MV
[Same Curve)
5 Nominal® Nominal* i7¢ Least
Revolution | Squares
minal® nal® 1/2 least
¢ o Nomi Revolution] Squares
!

¢ Applies to both gedars
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Third, the cross-track and radial errors clearly possess
a second harmonic in addition to the fundamental. One can
understand the structure of the cross-track error by re-
membering that the estimated and true orbital planes inter~
sect on a line running from the (minimum error) measurement
point through the center of the Earth and beyond. One thus
expects—and obtains—a second cross-track error mini-
mum where the orbits (nearly) intersect 180° away from the
pass point.

The more complex structure of the radial error probably
has to do with the interplay of two estimated orbit
parameters: the argument of perigee and the orbit eccen-
tricity.

Now compare Figure 4 to Figure 3. "Perfect calibration”
of the radar (i.e., 2zero residual biases) yields a dramatic
improvement in all ephemeris error components. One can
demonstrate, in fact, that most of the improvement results
from elimination of the residual bias in elevation.

Figures S and 6 both contain a second radar pass, with
measurement errors the same as for Figure 3. The additional
data in both cases lead to more accurate ephemerides, as one
would expect.

Comparing Figures 5 and 6, it is not surprising to find
that the larger pass spacing yields a more accurate satellite
period, and hence reduced along-track figqure error. The ra-
dial error is also slightly better for diametrically opposed
points on the orbit.
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On the other hand, the quarter-orbit spacing of the passes
should stabilize the estimated orbital plane (which must con-
tain the center of the Earth) better than half-orbit spacing.
Thus, one may understand the reduced cross-track error of
Figure 5 relative to that of Figure 6.

In all of the foregoing examples, the pass geometry is
such that the satellite flies almost directly over the radar.
Reference 5 contains SEEM output examples for other pass
geometries, for lower minimum-elevation angles, and for as

many as three passes.
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APPENDIX A

COVARIANCE MATRICES: DEFINITION AND PROPERTIES

This Appendix provides a review of the definition and
primary properties of covariance matrices. The first sub-
section gives properties not restricted to any particular
probability density function. The second subsection treats
covariance matrices for the special case of normal (Gaussian)
distributions.

1. Definition and General Properties

Consider an arbitrary random n-vector

w= g+ n ,

where g is the true value of w and 7 is some random error,
such as measurement error.

Let the probability density function of n be p(n). The
probability density of the tth component is then

=  jo
p; (ny) =_£--:£ p(n) k;i(dn,g .

(The subscript on pj indicates that its functional form may
depend upon the value of i.) The joint probability density
of nj and nj (where i¥j) is

- 4=

Jor<] ptm) T (an,) .
kyi
ket

Pij (ni 'nj) '-.

(A=1)

(A-2)

(A=3)

i




Clearly this function is symmetric:

Pig{Nyemg) = Pystnymy) (A-4)

With these definitions, the probability that n; lies in
the interval {a,b]) is then

b

The probability that n; lies in [a,b), while also “j lies
in {c,d) is
d

b
£ £ Pij(ni,nj)dnidnj .

Now define the expeclation value of any function
£(n) as

-

Then

L )
E{ni) '-i nip(ni)dni

£ 7.

i’ (A=6)

the mean of nj. " If 7= 0, then n is said to be unbiased.




Also, -
- .2 =2

- the vaariance of nj. Further,

$+® 4o

E{(n.-n. - - = -
i) (ny=hy)) _i -l(ni "i"”j'”j’pij‘”i'“j)dﬂidﬂj
s pij°i°j ’

the covaariance of nj and LEE Define guantity pij as the
correlation coeffient of nj and nj. A theorem exists that

“lorgyea

Finally, define the covariance matai{x Cn a matrix with
diagonal elements

2
Cplys =05 '

and off-diagonal elements
(cn)ij = °ij°i°j .

That ‘.0

C, = EL-%) (p-Hty |

A-5

(A-7)

(A-8)

(A-9)

(A-10a)

(A-10b)

(A=11)




Note that one may estimate Cn from a set of data sam-
ples (p)x., k=1, 2, ..., K by replacing the integrals of
Equations (A-€) and (A-7) by sums over the index k, providing
that the joint probability functions pij(“i'“j) are known
(or assumed). (This report does not pursue further the sub-

ject of sampling and subsequent estimation of Cn.)

Clearly Cn is symmetric. 1If all the nj are linearly
independent, then

e I Pijq < ¥ (A-12)

3

and one can show that Cn is positive definite—i.e., its
inverse Cn-l exists.,

Now consider the transformation

i=Frp , (A-13)

where { is an m-vector (m<n) and F is any m x n matrix that is
not a function of n.

A functional dependence of £ on #, such as that in
Equation (A-13), means that for every point occurring in n-
space e corresponding point exists in {-space. Thus, for
any arbitrary volume Vn in np-space, the same number of
points must occur in the corresponding volume v‘ in
{-space:

I;’"fp‘ (ST SEREY I;--[pn('ndnl"-dnn . (A=14)
¢ n




Here the subscripts on the probability densities denote that
their functional forms are in general different. But since
vn is arbitrary in Equation (A-14), it follows that

p;(i)dcl~°'dcm = pn(fl)dnl---dnn . (A=-15)

This is a fundamental invariance relation for functional
transformations among random-vector spaces.

It now follows that

I o
B4} = [oe-fEp (R o eear,

Lol +
= !oo:l Fn-pn(r’)dnlosodnn

= F.E{(N} , (A-16)
that is,
T=Fp . (A=17)
Similarly,
c, = y.cn.r* . (A-18)

Note that neither Equation (A-17) nor (A-18) is necessarily
valid if F = F(n).

According to Equation (A-17), if n is unbiased then {
will also be unbiased. Equation (A-18) tells how to calcu-
late the covariance matrix in (-space. One can show that




the symmetry property of Cn is passed on to C‘. Further-
more, if Cn‘1 exists, and if F is of rank m, then c"1
exists and is also symmetric.

Consider the special case in which the transformation
matrix is Q, where Q is an n x m matrix of full rank such that

Q =1, (A-19a)

that is,

e =0" . (A-19b)

Examples of such matrices are those that perform orthogonal
rotations upon the space 7. Of particular importance is the
rotation Q which yields a diagonal C, ("diagonalization of
c.").

n

4

Finally, one can show that when F = Q, the determinants
of C‘ and Cy are egual:
el = le 1 (A=-20)
Moreover, the trace of Cﬂ is invariant under the Q-
transformation:

n
2) =} 2
121(0* % 121(°i "n (A-21)

Thus, if a variance vector ¢ is defined with components 0%,
02 eco0 Op, then Equation (A-20) states that the length
of ¢ is invariant under coordinate-system rotations.

A-8

P




2. Properties When the Density Function Is Normal

Properties of n and Cn treated thus far do not depend
upon any particular assumptions about the form of p(n).
Consider now, however, the following prbblem.

Referring to Equation (A-1), suppose a measurement of g
is attempted, yielding the measurement w because of noise
corruption 5. Suppose one knows both ﬁ'and Cn. Let the
estimated value of K be

prEwy
Then the mean of a large number of measurements will be

=y

The problem is now:

a. What is the probability P that y* will fall
within some prescribed volume V about the
point p?

b. What is an appropriate prescription for V?

As regards Question a., obviously
P = L eee
!v [ptman eeean .

Evaluation of P requires knowledge of the integrand within
V. However, 7 and Cn. the first and second moments of
P(n), do not in general completely specify p(n)—which may
possess higher, independent moments. Hence, additional
assumptions about p(n) are necessary in order to evaluate P.

(h-22)

(A=-23)

(A-24)




Moreover, one can expect that the answer to Question b.
will be sensitive to the assumed form of p(n).

Assume now that p(n) has normal (i.e., multivariate
Gaussian) form:

1 2
p(n) = "/2|c 372 ° . (A-25)
n

(27)

This probability-density form has widespread utility. Since
the form is completely specified by 7 and Cn' one can expect
a mathematically fruitful investigation of the stated
problem.

The investigation proceeds by considering the behavior
of pn(n) under coordinate-system rotations, reverting now
to the notation of Equation (A-15). Now under a coordinate
rotation

{=on (A-26)

the Jacobian of the transformation is the absoclute value of
the determinant |[O|, and so

dclo-odcn = ”Q“dnlooodnn o (A’27)
Then by Equation (A=-15)

"
Pp) ol p(n) (A-28)

- g(m-f)'c “m-m (A-29)

- p |
= e
(@02 jolj - |c, 13/2

A-10




Then, using Equation (A-20),
1/2 1/2
llell-1c, 1*/2 = e (%72, (A-30)

Also, using the rotation-matrix property of Eguation (1%9a),

(n-7) 1‘cn'l -7 = m-7 "oo*cn'loa*(n-?i)
- -1 R (A=31)
@-0'cwe-h .
Hence
: . ~§(:-t>*c¢’1(t-f>
p ( ) = e ’ -
4 (2ﬂ>“/2lczll/2 (A-32)

which is of the same functional form as Equation (A-29).

One can also readily infer that under coordinate-system
translations, the form of Equation (A-29) is also invariant.
Let this form be denoted as P(E}Cn:n). Thus, the mean and
the covariance matrix play the same roles in the probability
density function, regardless of coordinate-system selection.

Now assume that Q is chosen such that CC is diagonal.
Then

> 1
p(l.,C, :d) = T ..
‘ n 2 ° es e
(27) (o1 °2 °n);
2 =42

(3 ,=F,) (€, =T,

+_——2—§ L ‘—(——2—)—

4]

(02 )( n’'g (A=33a)
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1 (Ci-'fi)z
= g 1 3-7 ( Z
o4 )‘
{A-33b)

i=1 | V2n (°i)(

(i.e., the factor 1/ Y20 occurs n times). Thus, if the
covariance matrix is diagonal, the multivariate probability
density is the product of univariate densities—i.e., the
components of ! are statistically independent.

This result does not hold in general for non-normal
forms of p. However, one can show that statistical inde-
pendence always implies a diagonal covariance matrix.

This completes the groundwork appropriate to address
Question b.

Suppose, in Equation (A-25), the variable expression in
the exponent is set equal to a constant a2, where a > 0:

(A-34)

(nJi)*cn'l(n-ﬁ) = al

This is the eguation of an ellipsoid in the n-fold hyperspace
of n. For example, if n = 2, Equation (A-34) becomes

(n1 n) , (n1 "1”‘"2"’2) (n2 nz) ) .
o 2 912 c. o + o 2 = a (1'912 ) [ (A'3S)
b 12 2

Suppose the integration volume V is taken to be this n-
dimensional "error ellipsoid.® Then the questjions are: What
are the properties of this error ellipsoid, and to what ex-
tent is it described by cn-‘v

A-12




The center of the ellipsoid in n-space is obviously at
7. By Equations (A-1) and (A-22),

(p*=p) = (n-N) (A-36)

so that in p*-space the ellipsoid center is at g, which is
certainly desirable.

From Equation (A-34) one can see that the surface of
the error ellipsoid is a surface of constant prohability.
For a rotation of the coordinate system to a new {-~set
[see Eguation (A-31)]), the form of Equation (A-34) is
clearly invariant. The relationship of the ellipsoid to
the new probability density [Eguation (A-32)]) is also in-
variant. Thus, taking Equation (A-20) into account, one
can see that the numerical value of the probability density
on the ellipsoid surface is invariant under rotations.
Since a is arbitrary, it follows that P—given by Equation
(A-24)—is also invariant with respect to coordinate-system
choice. Thus, the error ellipsoid can meaningfully serve
as a "confidence volume."

Assume now that the rotation Q has been selected so as

to make C, diagonal. Then, from Equation (A-33a)

14

A-13




The principal half-axes of the ellipsoid are clearly a(a1)c.
a(oz)t, eves a(gn)‘. The ellipsoid orientation in
n-coordinates is specified by the requisite diagonali-
gation matrix Q. That is, Q is the set of direction cosines
between the n-axes and the {-axes along which the ellipsoid
is oriented.

Thus, C (and of course also C-1) contains information
that specifies both the shape and orientation of the error
ellipsoid (Q is derivable from C,). The selectable parameter
a is the scaling factor of the principal dimensions of the
ellipsoid. Thus

V= V(Cn,l,n) L] (A°38)

The "io - confidence volume® is then V(Cn,1,n). the "20 =~
confidence volume® is V(Cn.2.n). etc.

One can extract a certain amount of information from Cn
and Cn'1 without diagonalization. The standard deviation
of the resultant of 17 is the trace of Cn:

b 172
= .
121 Cndas (A-39) 1

{see Equatfion (A-21}). The ‘cn'1’11 are the reciprocals of
the intercepts of the 1o - ellipsoid with the coordinate axes
of the n-system.

Question a. can now be answered by integrating Egquation
(A-24) in the most convenient coordinate frame, i.e., the
diagonal frame { for L = O:

A-14




P = f see I p(o'c"t’dclo.odcn

V(C;.a,n)
1,2
n - X.
= I (X EY ! b 1 e 2 3 dx . A-40
Sphere of i=1 /Zn i ! ( )
Radius a

using Equation (A-33b) with a change of coordinates

X. S e . (A"1)

Thus P for n =), n« 2, n= 3, etc., is respectively the proba-
bility associated with a linear confidence interval of length 2a0,
a2 circular confidence area of radius a0, & spherical confidence
volume of radiuvs ac, etc. Table A~) gives numerical values of

P for some commonly occurring values of n and a. This completes
the investigation of Question a. for n-vectors.

Suppose, now, that Questions a. and b. are extended in
scope to read as follows:

(1) Wwhat is the probability P, that m specified com-
ponents of M* will fall within some prescribed
volume Vpy about up (i.e., referring to the
specified m~dimensional subspace of g, m < nj?

(2) what is an appropriate prescription for Vp?

As before, these questions will be considered only for the
case of normsl probability density p(7,Cpim).

A-15
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|

To simplify the ensuing notation, assume for the moment
that the first m components of p* are those specified. Then
the probability density for the m components is

LT (A-42)
= L) (ﬁc ,n)dn ooodn -
p(ng) _£ -£ PN, m+l n '
and
= [ees .o (A-43)
P ,fv [ pnean eeean .
m
The solution of the subspace problem then hinges upon a
fundamental theorem of multivariate normal probability. One
can prove that
1 -1,= _ + -1 R
p(n ) = w73 e Tg=My) Cop ™ (M=)
(27) Icnml
(A-44)

= P(ﬂmrcnmfﬂ) [

Here the covariance matrix cnm is the subset array of
Ch corresponding to the m specified components of mu*.

Since the forms of Equations (A-42) and (A-43) are iden-
tical to those of Equations (A-25) and (A-24), respectively,
8l) of the previous results for V and P of the full n-
vector immediately follow where one substitutes fp and C
for V and Cy. nm

A-17




Extension to any m components of p* is obvious, since
the numbering of the components is arbitrary. One must, of
course, select corresponding components in forming N and

Come

Finally, up to this point the analysis has assumed that
both C_ and 7] are known. 1If only 7 is known, however, one
can find g* but not P. If only Cn is known, one can find P
but not u*. These comments also apply to m-fold subspaces

of these n-vectors.
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APPENDIX B

PROPAGATION ERROR MATRIX

The first of the following subsections states the problem
of determining a matrix representing the error in the propa-
gation matrix [Equation (B-2)]. The second subsection gives the
solution approach and the solution itself. The final sub-
section contains intermediate steps of the analysis.

1. The Propagation Error Matrix Problem

The objective here is to find the effect of error in the

state vector
X = r_o.
() } (B-1)
o

upon the propagation matrix

[£00!g0 0]
0£0,0g0
- a 00f 00g
¢x ,t,t ) =]---- - - —
e e too0'goo (B-2)
0£0,0g0
002100 g
Here (see Reference B-1)*
. an
f=) -:-—(1 cos E); (B-3a)

©

* Equations (B-3a to 3d) are among Equations (7P18) and (7P19)
with the convenient abbreviations p £ co, q £ Dg/va.
Equations (B-4) to (B-6) are among Equations (7BS) - (7B9).
Equation (B-8) is Equation (7P14), and Equatjon (B-9) is
obtained by integrating Equation (4G4) with £ E-Eo and
n defined by Equation (4G7), identical with Eguation (B-7)
here.

B-3 i PHECEDING RPAOR BLAMK-NOT FILIGD
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with

S —
S o g e -

and

na

r ~
g -(_‘Z)sin £ + %—- (1-cos E);

a A
t-to

a(l - pcos® + gsink),

-%—(?: - psink ¢ q(l-cos £)),

FPor Earth satellites,i » 3.78808 x 104 km>/?/min.

| ——

B-4

(B-3b)

{B-3c¢)

(B-3d)

(B-4)

(B-5)

(B-6)

(B~7)

(B~8)

(B-9)




Specifically, the problem is to obtain an explicit repre-
sentation for *tto' the propagation exror mataix., as defined i
by

(o] tt [~] {(B-10)

2. Solution Summary and Results

Using Equations (B-1) and (B-2), the lefthand side of
Equation (B-10) is

r 8£+ 1 _&g ——f-ﬁt +—a—6|" +|'29..3r + 22 5t
°© ° or,  © ar © N\or ar. 9
--- - Se_ e S _ e __ T L (B=11)
[6%*,}66 [ _a_f—6|’ +—ai6;)+’ -g.s—ar +l.9-3;)
o o O\sr P °© ar ar ©
e} lo o] (]
where
of _Jof of of
s Slexe 3y Sz | (B-12)
o [xo Yo zo]
the quantities x5, Yor 2o being the components of rqo: etc.
Comparing the Equations (B-11) and (B-10),
Van = |- aro,_a_o - a_{'°;a_'-- (B-13)
tt 2 ! of - [ag ' ¢ )
M I bl ﬂo[%jL 'ng]
t
L 3' 3t° '3l6




The next subsection shows that

af + . ¢4

5rg - fufo t %

of _ t . ¢

> £, o ¢ f22 T ¢
°

where

(o]
~
[ ]

I
S~
H‘JN

[+']

<N
e

@
e

+
P
[y
+
N
@
o]
)
/—\
g2
b g

2
2 of of f
£, ‘(T ﬁ*(—z“gs) r’(‘lg“z)sa

na na

(B-14a)

(B-14b)

(B-15a)

(B-15b)

(B-15c)

(B-154)

Identical forms exist in g, f, and é. Using Equations (B-14)

and their analogs, the required result is

o [ ) * .. * ' L] *
£11%° % *£12% % . It *f

+ T AR rer

_?11 o © 912}9 ) . %21%" %o

tt R P

. . T
fJ.l"o 'o + 1

-+

922'6

A |
) ¥921%° %

*931% T * 912%" %

o ©

bk §
22'0 f

b §
+_922' o
o ¢ : . + .of
12%° %0 Y1 fafetf ¢ i22'0 o '
+ 1

O
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The partial derivatives of Equations (B-15) and of its
analogs in g, £, and g are given in Table B-1, wherein:

A _ a 3 -~ a

E, = (T . K)n(t - ) (B-17a)
E =2 ginE (B-17b)
P r 4

g = - iL(l-cos E)- (B=17¢c)
q 3 !

w = p ein £+ Qecos E . (B-18)

Note that expressions for the derivatives of £, g, f,
and g, with respect to each of the components of r, and
ro, are available in Reference B-2. There, development of
derivatives proceeds from expressions of the general form
of Equations (B-14) and (B-15) here, except that the
intermediate variables Dy,ro, and 1/a are used
rather than p, q, and a. One can prove that the results
here are identical to those of Reference B-2, after cor-
recting certain misprints in the latter.t

3. Derivation of Partial Derivatives

This subsection contains derivations of Equations (B-14),
(B-15), and results of Table B-1 with defining Equations
(B-17) and (B-18). ’

— aM

* In Reference B-2, Equation (15C20), the term Ta has been
gmitted [see Equation (15C5)]. 1In Equatign (15C53) for
gr+ the first denominator should read ror

r°3 .

rather than
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Referring to the first footnote of this appendix,

Reference B-1 shows that

P = e CcOs Eo N (B-19a)

g = e gin Eo . (B-19b)

Here e is the orbit eccentricity and E5 is the eccentric
anomaly at epoch Eo. One will find that of the para-
meters a, p, 9, n, and r, only three can be independently
chosen.

Let these three be a, p, and g. Then if £ is any position
or velocity component,

9f _ of da 2f 2 of o
-ttt T oLt 55 ot (8-20)

with analogous relations in g, f, and g. From Equations
({B-4) through (B-6) one can determine that

3a _[2a°).
i, “\3) % v (B-21a)
X
(=]
2 1
e A0 2L N (B-21b)
(o) r
[+
SQS.. -(.S%)x + (_lz)x ' (B-21c)
xO ro ° na °
B-9




with analogs in yo and zo. Similarly ;
da 2 :
— = T * X ' (B-222) :
axo (p ;> © i

(B-22b)

.a .
;f- = —lf)xo - (%7)”0 ’ (B-22c)
o -

na

with analogs in yo and z,. Equations (B-14) and (B-15),

. . t
and analogs in g, f, and g, follow immediately by combining
Equations (B-20), (B-21), and (B-22).

Next, note that

en _ _ 3n 1
va Za ’ (B-232)

an . o

p ’ (B-22b)

§% -0 . (B-23c)

- (;‘;)2 L (B-24)
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by Equation (B-5). Hence

2 a
-:_- --(%)(liniiﬂﬂg%) .

by

Differentiation of Equations (B-9) yields Equations (B-17),
where

@
oo
m
Ly 24
>

L

(B-25a)

{B-25b)

(B-25c)

(B-26a)

(B-26b)

(B-26c)

(B-27a)




of . &
%  p '’ (B-27b)
°E _ &
< E °
%9 ~ “q (B-27¢)

with the aid of Equations (B-23), (B-25), and (B-26) one
can then differentiate Equations (B-3) with respect to &, p,
and q to obtain the results in Table B-1.

B-12
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APPENDIX C

INVERSION OF A MATRIX
Suppose a matrix has the form
a4 ... H H H BT
C= H cos GN_3+H H H H . (C-1)
H cos H GN_Z-O-H H H '*
H L X ] H H %1* H
L H eee a u B GNHJ
wherein the G;, I=1,2,...,N, and B are themselves n X n
diagonal matrices with elements, for i=1,2,...,n:
G.).. >
TR (C-2)
H.. 20 .
i (c-3)

The problem here is to find C-1, and concomitantly to
demonstrate that Equations (C-2) and (C-3) ensure its
existence.

The ensuing solution rests upon a generalization of
Cramer's Rule (Reference C-1, p. 286). Given a matrix
whose partitions are members of a field, the determinant of
the matrix is also a member of the field and can be evaluated




by standard manipulative techniques. Cramer's Rule then
holds for finding the inverse matrix, whose corresponding
partitions will again be members of the field.

Now, the set of n * n invertible, diagonal matrices plug
the null matrix, forms a field under matrix addition and multi-
Plication. Both G; and R are members of this field, assuming
for the moment that B as well as Gy is invertible. Thus

[ ] -1
c| (€ )y = lAlw 1 1,0 =1,2,¢e0.,8 ' (C-4)

an n X n matrix eguation wherein all quantities are to be ex-
pressed in terms of Gy and H. Here |C| is the determinant

of C. The gquantity |[4|j3 is the cofactor of C31. and (€~ 1)y,
is the general element of C-V.

One may usc a recursive approach to evaluate the deter-
minant [C|. Let

CyeC . (C-5)

Then

and for N>1 let Cy.y be the matrix of the first N-) rows and
columns of Cy.

Now one may expand [Cy| via the last row, and after some
rearrangement of rows and columns obtain the following:




ICNI = (GN + B)‘ICN..]_‘

msseal

- - - - I

® ¥ X

G, +H

m o X e

G,+H

[ XX ]

LA X J

[ XX J

® X =

(C=6)




“"""“'“""'l!""""""-"lllH---—------_-uggg.‘!

One may evaluate the determinants here by subtracting the
last row from each of the other rows and then expanding via
the last column. Eguation (C-6) then becomes

el = (G B) | | 2<N-1 )N-l -1
| = + B, 4| +BS 1 6 G, " . (€-7)
N N N-1 1=1 /g4 1

By evaluatina |C2| and then |C3]|, one may infer that |Cx|
probably has the form

ICNI‘(;?G)(I-#H?GI-I) .

I=] 1 1=

(C-Ei

One may easily prove this result, for N>1, by substitution
into Equation (C-7).

Clearly lcy| is n x n diagonal, and

eyl = [ n (51)..]'[1 + Hy, ? (l/(GI) )] . (c-9)

N'ii 1=1 ii 1=1 ii

By Equations (C-2) and (C-3), none of the |Cn]|j;j vanishes,
so that |CnF! exists. Bence by Equation (C-4) all of the
C35”) exist and so C~! exists.

Now in general |4335] is an (N-1) x (N-1) matrix.
Define

18,41 - |8,,] (C=10)
LI 1




where for consistency of the preceding results

8yl =1 (C=11)
(+}

the n x n identity matrix. The values of IAIJ'1, corresponding
to N=2, are clearly

|An|1 =G, +H; lAlzl1 = -H ;
[6,y] ==H ; |a,,] =G, + H .
a'y 22!, 1

For N>2, one can find IAIJIN-1 by acain using a recursion
approach. For the cases 1=J, one may find IAII,N-1 via
exactly the approach used previously for |Cyl:

N N
S | -1 _ -1
IAIIIN.1 Gy ( n Gx)(l +H] G HG; ).

K=1 K=1 (c-12)
Observe that this result holds for N>1.
For 1#J, a typical 'AIJ'N-l for large N is
Gl+H cee H H H
N-2,_,\N-3| ° t
lAN-2,N~3‘N.1 (-1)" “(=1) H ses Gy_q*H H H | (c-13)
H oo H H R
H soe B B GN+H




By interchanging the last two rows and then the last two
columns, one can bring the determinant here into the form
of the determinants of Eguation (C-6) and use the same

evaluation procedure as before. One can then see that

N
(essty ), = e e (he) e

valid for sz.

One can then easily verify that

-1 -1 . N3\ -
€.yt =6 5m-b(1+32¢:x1) ¢, ¢,7t ,

i X=1 1 (€=13)

where 033 is the Kronecker delta. This holds for N1,

I=1,...,N and J=1,...,N. This eguation also holds even when

B is not invertible, since that particular property of B—assumed
earlier—was not actually used in the derivation. Finally,

one can decompose this diagonal-matrix equation into a set of
scalar equations by inspection, with the aid of the relation

-1
(148?6;1)11 - ; 3 i=1,°°°,n
X=1 i
e aux.l(u.(c"?u)

(C-16)

C-8
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